This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 34
Filtering by

Clear all filters

129045-Thumbnail Image.png
Description

Background: Androgens bind to the androgen receptor (AR) in prostate cells and are essential survival factors for healthy prostate epithelium. Most untreated prostate cancers retain some dependence upon the AR and respond, at least transiently, to androgen ablation therapy. However, the relationship between endogenous androgen levels and cancer etiology is unclear.

Background: Androgens bind to the androgen receptor (AR) in prostate cells and are essential survival factors for healthy prostate epithelium. Most untreated prostate cancers retain some dependence upon the AR and respond, at least transiently, to androgen ablation therapy. However, the relationship between endogenous androgen levels and cancer etiology is unclear. High levels of androgens have traditionally been viewed as driving abnormal proliferation leading to cancer, but it has also been suggested that low levels of androgen could induce selective pressure for abnormal cells. We formulate a mathematical model of androgen regulated prostate growth to study the effects of abnormal androgen levels on selection for pre-malignant phenotypes in early prostate cancer development.

Results: We find that cell turnover rate increases with decreasing androgen levels, which may increase the rate of mutation and malignant evolution. We model the evolution of a heterogeneous prostate cell population using a continuous state-transition model. Using this model we study selection for AR expression under different androgen levels and find that low androgen environments, caused either by low serum testosterone or by reduced 5α-reductase activity, select more strongly for elevated AR expression than do normal environments. High androgen actually slightly reduces selective pressure for AR upregulation. Moreover, our results suggest that an aberrant androgen environment may delay progression to a malignant phenotype, but result in a more dangerous cancer should one arise.

Conclusions: The model represents a useful initial framework for understanding the role of androgens in prostate cancer etiology, and it suggests that low androgen levels can increase selection for phenotypes resistant to hormonal therapy that may also be more aggressive. Moreover, clinical treatment with 5α-reductase inhibitors such as finasteride may increase the incidence of therapy resistant cancers.

ContributorsEikenberry, Steffen (Author) / Nagy, John D. (Author) / Kuang, Yang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2010-04-20
128761-Thumbnail Image.png
Description

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can

In traditional public good experiments participants receive an endowment from the experimenter that can be invested in a public good or kept in a private account. In this paper we present an experimental environment where participants can invest time during five days to contribute to a public good. Participants can make contributions to a linear public good by logging into a web application and performing virtual actions. We compared four treatments, with different group sizes and information of (relative) performance of other groups. We find that information feedback about performance of other groups has a small positive effect if we control for various attributes of the groups. Moreover, we find a significant effect of the contributions of others in the group in the previous day on the number of points earned in the current day. Our results confirm that people participate more when participants in their group participate more, and are influenced by information about the relative performance of other groups.

ContributorsJanssen, Marco (Author) / Lee, Allen (Author) / Sundaram, Hari (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-07-26
128266-Thumbnail Image.png
Description

Groundwater is a common-pool resource that is subject to depletion in many places around the world as a result of increased use of irrigation and water-demanding cash crops. Where state capacity to control groundwater use is limited, collective action is important to increase recharge and restrict highly water-consumptive crops. We

Groundwater is a common-pool resource that is subject to depletion in many places around the world as a result of increased use of irrigation and water-demanding cash crops. Where state capacity to control groundwater use is limited, collective action is important to increase recharge and restrict highly water-consumptive crops. We present results of field experiments in hard rock areas of Andhra Pradesh, India, to examine factors affecting groundwater use. Two nongovernmental organizations (NGOs) ran the games in communities where they were working to improve watershed and water management. Results indicate that, when the links between crop choice and groundwater depletion is made explicit, farmers can act cooperatively to address this problem. Longer NGO involvement in the villages was associated with more cooperative outcomes in the games. Individuals with more education and higher perceived community social capital played more cooperatively, but neither gender nor method of payment had a significantly effect on individual behavior. When participants could repeat the game with communication, similar crop choice patterns were observed. The games provided an entry point for discussion on the understanding of communities of the interconnectedness of groundwater use and crop choice.

ContributorsMeinzen-Dick, Ruth (Author) / Chaturvedi, Rahul (Author) / Domenech, Laia (Author) / Ghate, Rucha (Author) / Janssen, Marco (Author) / Rollins, Nathan (Author) / Sandeep, K. (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016
128354-Thumbnail Image.png
Description

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.

ContributorsDaurer, Benedikt J. (Author) / Okamoto, Kenta (Author) / Bielecki, Johan (Author) / Maia, Filipe R. N. C. (Author) / Muhlig, Kerstin (Author) / Seibert, M. Marvin (Author) / Hantke, Max F. (Author) / Nettelblad, Carl (Author) / Benner, W. Henry (Author) / Svenda, Martin (Author) / Timneanu, Nicusor (Author) / Ekeberg, Tomas (Author) / Loh, N. Duane (Author) / Pietrini, Alberto (Author) / Zani, Alessandro (Author) / Rath, Asawari D. (Author) / Westphal, Daniel (Author) / Kirian, Richard (Author) / Awel, Salah (Author) / Wiedorn, Max O. (Author) / van der Schot, Gijs (Author) / Carlsson, Gunilla H. (Author) / Hasse, Dirk (Author) / Sellberg, Jonas A. (Author) / Barty, Anton (Author) / Andreasson, Jakob (Author) / Boutet, Sebastien (Author) / Williams, Garth (Author) / Koglin, Jason (Author) / Andersson, Inger (Author) / Hajdu, Janos (Author) / Larsson, Daniel S. D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-04-07
128327-Thumbnail Image.png
Description

Experiments have made important contributions to our understanding of human behavior, including behavior relevant for understanding social-ecological systems. When there is a conflict between individual and group interests in social-ecological systems, social dilemmas occur. From the many types of social-dilemma formulations that are used to study collective action, common-pool resource

Experiments have made important contributions to our understanding of human behavior, including behavior relevant for understanding social-ecological systems. When there is a conflict between individual and group interests in social-ecological systems, social dilemmas occur. From the many types of social-dilemma formulations that are used to study collective action, common-pool resource and public-good dilemmas are most relevant for social-ecological systems. Experimental studies of both common-pool resource and public-good dilemmas have shown that many predictions based on the conventional theory of collective action, which assumes rational, self-interested behavior, do not hold. More cooperation occurs than predicted (Ledyard 1995), “cheap talk” increases cooperation (Ostrom 2006), and participants are willing to invest in sanctioning free riders (Yamagishi 1986, Ostrom et al. 1992, Fehr and Gächter 2000, Chaudhuri 2011). Experiments have also demonstrated a diversity of motivations, which affect individual decisions about cooperation and sanctioning (see Fehr and Fischbacher 2002 and Sobel 2005 for reviews, and Bowles 2008 for policy implications).

Created2015
128044-Thumbnail Image.png
Description
A modified mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with cytotoxic T-lymphocytes (CTL) and infected cells in eclipse phase is presented and studied in this paper. The model under consideration also includes a saturated rate describing viral infection. First, the positivity and boundedness of solutions for nonnegative initial

A modified mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with cytotoxic T-lymphocytes (CTL) and infected cells in eclipse phase is presented and studied in this paper. The model under consideration also includes a saturated rate describing viral infection. First, the positivity and boundedness of solutions for nonnegative initial data are proved. Next, the global stability of the disease free steady state and the endemic steady states are established depending on the basic reproduction number R[subscript 0] and the CTL immune response reproduction number R[subscript CTL]. Moreover, numerical simulations are performed in order to show the numerical stability for each steady state and to support our theoretical findings. Our model based findings suggest that system immunity represented by CTL may control viral replication and reduce the infection.
ContributorsAllali, Karam (Author) / Danane, Jaouad (Author) / Kuang, Yang (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-21
128247-Thumbnail Image.png
Description

Institutions, the rules of the game that shape repeated human interactions, clearly play a critical role in helping groups avoid the inefficient use of shared resources such as fisheries, freshwater, and the assimilative capacity of the environment. Institutions, however, are intimately intertwined with the human, social, and biophysical context within

Institutions, the rules of the game that shape repeated human interactions, clearly play a critical role in helping groups avoid the inefficient use of shared resources such as fisheries, freshwater, and the assimilative capacity of the environment. Institutions, however, are intimately intertwined with the human, social, and biophysical context within which they operate. Scholars typically are careful to take this context into account when studying institutions and Ostrom’s Institutional Design Principles are a case in point. Scholars have tested whether Ostrom’s Design Principles, which specify broad relationships between institutional arrangements and context, actually support successful governance of shared resources. This article further contributes to this line of research by leveraging the notion of institutional design to outline a research trajectory focused on coupled infrastructure systems in which institutions are seen as one class of infrastructure among many that dynamically interact to produce outcomes over time.

ContributorsAnderies, John (Author) / Janssen, Marco (Author) / Schlager, Edella (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-23
128245-Thumbnail Image.png
Description

Research on collective action and common-pool resources is extensive. However, little work has concentrated on the effect of variability in resource availability and collective action, especially in the context of asymmetric access to resources. Earlier works have demonstrated that environmental variability often leads to a reduction of collective action in

Research on collective action and common-pool resources is extensive. However, little work has concentrated on the effect of variability in resource availability and collective action, especially in the context of asymmetric access to resources. Earlier works have demonstrated that environmental variability often leads to a reduction of collective action in the governance of shared resources. Here we assess how environmental variability may impact collective action. We performed a behavioral experiment involving an irrigation dilemma. In this dilemma participants invested first into a public fund that generated water resources for the group, which were subsequently appropriated by one participant at a time from head end to tail end. The amount of resource generated for the given investment level was determined by a payoff table and a stochastic event representing environmental variability, i.e., rainfall. Results show that that (1) upstream users’ behavior is by far the most important variable in determining the outcome of collective action; (2) environmental variability (i.e. risk level in investing in the resource) has little effect on individual investment and extraction levels; and (3) the action-reaction feedback is fundamental in determining the success or failure of communities.

ContributorsBaggio, Jacopo (Author) / Rollins, Nathan (Author) / Perez, Irene (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2015
128244-Thumbnail Image.png
Description

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data.

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data. This study was motivated by nine case studies that appeared to be inconsistent with the expectation that the presence of Ostrom’s Design Principles increases the likelihood of successful common pool resource governance. These cases highlight the limitations of coding and analyzing Large-N case studies.

We examine two issues: 1) the challenge of missing data and 2) potential approaches that rely on context (which is often lost in the coding process) to address inconsistencies between empirical observations theoretical predictions. For the latter, we conduct a post-hoc qualitative analysis of a large-N comparative study to explore 2 types of inconsistencies: 1) cases where evidence for nearly all design principles was found, but available evidence led to the assessment that the CPR system was unsuccessful and 2) cases where the CPR system was deemed successful despite finding limited or no evidence for design principles. We describe inherent challenges to large-N comparative analysis to coding complex and dynamically changing common pool resource systems for the presence or absence of design principles and the determination of “success”. Finally, we illustrate how, in some cases, our qualitative analysis revealed that the identity of absent design principles explained inconsistencies hence de-facto reconciling such apparent inconsistencies with theoretical predictions. This analysis demonstrates the value of combining quantitative and qualitative analysis, and using mixed-methods approaches iteratively to build comprehensive methodological and theoretical approaches to understanding common pool resource governance in a dynamically changing context.

ContributorsBarnett, Allain (Author) / Baggio, Jacopo (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Perez Ibarra, Irene (Author) / Rubinos, Cathy (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
128200-Thumbnail Image.png
Description

The structure and dynamics of ecosystems can affect the information available to resource users on the state of the common resource and the actions of other resource users. We present results from laboratory experiments that showed that the availability of information about the actions of other participants affected the level

The structure and dynamics of ecosystems can affect the information available to resource users on the state of the common resource and the actions of other resource users. We present results from laboratory experiments that showed that the availability of information about the actions of other participants affected the level of cooperation. Since most participants in commons dilemmas can be classified as conditional cooperators, not having full information about the actions of others may affect their decisions. When participants had more information about others, there was a more rapid reduction of the resource in the first round of the experiment. When communication was allowed, limiting the information available made it harder to develop effective institutional arrangements. When communication was not allowed, there was a more rapid decline of performance in groups where information was limited. In sum, the results suggest that making information available to others can have an important impact on the conditional cooperation and the effectiveness of communication.

Created2013