This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 34
Filtering by

Clear all filters

128513-Thumbnail Image.png
Description

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be −7.9, −5.51, −6.11, and −3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

ContributorsDybala, F. (Author) / Polak, M. P. (Author) / Kopaczek, J. (Author) / Scharoch, P. (Author) / Wu, Kedi (Author) / Tongay, Sefaattin (Author) / Kudrawiec, R. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
128522-Thumbnail Image.png
Description

Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction

Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

Contributorsvan der Schot, Gijs (Author) / Svenda, Martin (Author) / Maia, Filipe R. N. C. (Author) / Hantke, Max F. (Author) / DePonte, Daniel P. (Author) / Seibert, M. Marvin (Author) / Aquila, Andrew (Author) / Schulz, Joachim (Author) / Kirian, Richard (Author) / Liang, Mengning (Author) / Stellato, Francesco (Author) / Bari, Sadia (Author) / Iwan, Bianca (Author) / Andreasson, Jakob (Author) / Timneanu, Nicusor (Author) / Bielecki, Johan (Author) / Westphal, Daniel (Author) / Nunes de Almeida, Francisca (Author) / Odic, Dusko (Author) / Hasse, Dirk (Author) / Carlsson, Gunilla H. (Author) / Larsson, Daniel S. D. (Author) / Barty, Anton (Author) / Martin, Andrew V. (Author) / Schorb, Sebastian (Author) / Bostedt, Christoph (Author) / Bozek, John D. (Author) / Carron, Sebastian (Author) / Ferguson, Ken (Author) / Rolles, Daniel (Author) / Rudenko, Artem (Author) / Epp, Sascha W. (Author) / Foucar, Lutz (Author) / Rudek, Benedikt (Author) / Erk, Benjamin (Author) / Hartmann, Robert (Author) / Kimmel, Nils (Author) / Holl, Peter (Author) / Englert, Lars (Author) / Loh, N. Duane (Author) / Chapman, Henry N. (Author) / Andersson, Inger (Author) / Hajdu, Janos (Author) / Ekeberg, Tomas (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-01
128470-Thumbnail Image.png
Description

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and

In this study, we present a novel methodology to infer indel parameters from multiple sequence alignments (MSAs) based on simulations. Our algorithm searches for the set of evolutionary parameters describing indel dynamics which best fits a given input MSA. In each step of the search, we use parametric bootstraps and the Mahalanobis distance to estimate how well a proposed set of parameters fits input data. Using simulations, we demonstrate that our methodology can accurately infer the indel parameters for a large variety of plausible settings. Moreover, using our methodology, we show that indel parameters substantially vary between three genomic data sets: Mammals, bacteria, and retroviruses. Finally, we demonstrate how our methodology can be used to simulate MSAs based on indel parameters inferred from real data sets.

ContributorsLevy Karin, Eli (Author) / Rabin, Avigayel (Author) / Ashkenazy, Haim (Author) / Shkedy, Dafna (Author) / Avram, Oren (Author) / Cartwright, Reed (Author) / Pupko, Tal (Author) / Biodesign Institute (Contributor)
Created2015-11-03
128491-Thumbnail Image.png
Description

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S–S molecular oscillations. High-pressure Raman studies further reveal that the AgS-S S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.

ContributorsWu, Kedi (Author) / Torun, Engin (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Fan, Xi (Author) / Pant, Anupum (Author) / Wright, David (Author) / Aoki, Toshihiro (Author) / Peeters, Francois M. (Author) / Soignard, Emmanuel (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-09-22
128492-Thumbnail Image.png
Description

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

ContributorsTuna, Aslihan (Author) / Wu, Kedi (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Cai, Hui (Author) / Aoki, Toshihiro (Author) / Horzum, Seyda (Author) / Kang, Jun (Author) / Peeters, Francois M. (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-05
128447-Thumbnail Image.png
Description

Mathematical models of infectious diseases are a valuable tool in understanding the mechanisms and patterns of disease transmission. It is, however, a difficult subject to teach, requiring both mathematical expertise and extensive subject-matter knowledge of a variety of disease systems. In this article, we explore several uses of zombie epidemics

Mathematical models of infectious diseases are a valuable tool in understanding the mechanisms and patterns of disease transmission. It is, however, a difficult subject to teach, requiring both mathematical expertise and extensive subject-matter knowledge of a variety of disease systems. In this article, we explore several uses of zombie epidemics to make mathematical modeling and infectious disease epidemiology more accessible to public health professionals, students, and the general public. We further introduce a web-based simulation, White Zed (http://cartwrig.ht/apps/whitezed/), that can be deployed in classrooms to allow students to explore models before implementing them. In our experience, zombie epidemics are familiar, approachable, flexible, and an ideal way to introduce basic concepts of infectious disease epidemiology.

ContributorsLofgren, Eric T. (Author) / Collins, Kristy M. (Author) / Smith, Tara C. (Author) / Cartwright, Reed (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03
128505-Thumbnail Image.png
Description

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviors. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2.

ContributorsWang, Gang (Author) / Robert, Cedric (Author) / Tuna, Aslihan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Alamdari, Sarah (Author) / Gerber, Iann C. (Author) / Amand, Thierry (Author) / Marie, Xavier (Author) / Tongay, Sefaattin (Author) / Urbaszek, Bernhard (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-14
128510-Thumbnail Image.png
Description

We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an

We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

ContributorsWhite, Thomas A. (Author) / Barty, Anton (Author) / Liu, Wei (Author) / Ishchenko, Andrii (Author) / Zhang, Haitao (Author) / Gati, Cornelius (Author) / Zatsepin, Nadia (Author) / Basu, Shibom (Author) / Oberthur, Dominik (Author) / Metz, Markus (Author) / Beyerlein, Kenneth R. (Author) / Yoon, Chun Hong (Author) / Yefanov, Oleksandr M. (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Messerschmidt, Marc (Author) / Koglin, Jason E. (Author) / Boutet, Sebastien (Author) / Weierstall, Uwe (Author) / Cherezov, Vadim (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-01
128646-Thumbnail Image.png
Description

Using the City of Roanoke, Virginia as a study site, this paper quantifies the forest structure, ecosystem services and values of vacant and residential land. Single family residential land had more trees (1,683,000) than vacant land (210,000) due largely to the differences in land area (32.44 km2 of vacant land

Using the City of Roanoke, Virginia as a study site, this paper quantifies the forest structure, ecosystem services and values of vacant and residential land. Single family residential land had more trees (1,683,000) than vacant land (210,000) due largely to the differences in land area (32.44 km2 of vacant land vs. 57.94 km2 residential). While the percentage of tree coverage was almost identical across land uses (30.6% in vacant to 32.3% in residential), the number of trees per ha is greater on residential land (290.3) than on vacant land (63.4). The average healthy leaf surface area on individual trees growing on vacant land was greater than that of individual trees on residential land. The fact that trees in vacant land were found to provide more ecosystem services per tree than residential trees was attributed to this leaf area difference. Trees on vacant land are growing in more natural conditions and there are more large trees per ha. Assessing the forest structure and ecosystem services of Roanoke’s vacant and residential land provides a picture of the current extent and condition of the vacant and residential land. Understanding these characteristics provides the information needed for improved management and utilization of urban vacant land and estimating green infrastructure value.

ContributorsKim, Gunwoo (Author) / Miller, Patrick (Author) / Nowak, David (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2016-03-23
129041-Thumbnail Image.png
Description

Background: Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke

Background: Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System.

Results: The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement.

Conclusions: The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time.

ContributorsLehrer, Nicole (Author) / Chen, Yinpeng (Author) / Duff, Margaret (Author) / Wolf, Steven (Author) / Rikakis, Thanassis (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2011-09-08