This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 24
Filtering by

Clear all filters

Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
Description

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies.

ContributorsMoya, Noel (Author) / Cutts, Joshua (Author) / Gaasterland, Terry (Author) / Willert, Karl (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-09
Description

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods.

ContributorsHunter, Mark S. (Author) / Segelke, Brent (Author) / Messerschmidt, Marc (Author) / Williams, Garth J. (Author) / Zatsepin, Nadia (Author) / Barty, Anton (Author) / Benner, W. Henry (Author) / Carlson, David B. (Author) / Coleman, Matthew (Author) / Graf, Alexander (Author) / Hau-Riege, Stefan P. (Author) / Pardini, Tommaso (Author) / Seibert, M. Marvin (Author) / Evans, James (Author) / Boutet, Sebastien (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-12
129245-Thumbnail Image.png
Description

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

ContributorsChang, Jui-Yung (Author) / Basu, Soumyadipta (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-07
127902-Thumbnail Image.png
Description

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of a clinically diagnosed AD patient [ASUi003-A] and a non-demented control (NDC) patient [ASUi004-A] homozygous for the APOE4 risk allele. These hiPSCs maintained their original genotype, expressed pluripotency markers, exhibited a normal karyotype, and retained the ability to differentiate into cells representative of the three germ layers.

ContributorsBrookhouser, Nicholas (Author) / Zhang, Ping (Author) / Caselli, Richard (Author) / Kim, Jean J. (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-10
127863-Thumbnail Image.png
Description

Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising

Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs) demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages.

ContributorsLou, Chih-Hong (Author) / Dumdie, Jennifer (Author) / Goetz, Alexandra (Author) / Shum, Eleen Y. (Author) / Brafman, David (Author) / Liao, Xiaoyan (Author) / Mora-Castilla, Sergio (Author) / Ramaiah, Madhuvanthi (Author) / Cook-Andersen, Heidi (Author) / Laurent, Louise (Author) / Wilkinson, Miles F. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-06-14
127836-Thumbnail Image.png
Description

Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction

Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.

ContributorsCasadei, Cecilia M. (Author) / Tsai, Ching-Ju (Author) / Barty, Anton (Author) / Hunter, Mark S. (Author) / Zatsepin, Nadia (Author) / Padeste, Celestino (Author) / Capitani, Guido (Author) / Benner, W. Henry (Author) / Boutet, Sebastien (Author) / Hau-Riege, Stefan P. (Author) / Kupitz, Christopher (Author) / Messerschmidt, Marc (Author) / Ogren, John I. (Author) / Pardini, Tom (Author) / Rothschild, Kenneth J. (Author) / Sala, Leonardo (Author) / Segelke, Brent (Author) / Williams, Garth J. (Author) / Evans, James E. (Author) / Li, Xiao-Dan (Author) / Coleman, Matthew (Author) / Pedrini, Bill (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2018-01
129319-Thumbnail Image.png
Description

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

ContributorsBasu, Soumyadipta (Author) / Yang, Yue (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-19
129292-Thumbnail Image.png
Description

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced with the help of the film-coupled metamaterial structure, resulting in significant improvement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The performance of the proposed light trapping structure is demonstrated to be little affected by the grating ridge width considering the geometric tolerance during fabrication. The optical absorption at oblique incidences also shows direction-insensitive behavior, which is highly desired for efficiently converting off-normal sunlight to electricity. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

ContributorsWang, Hao (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01
129243-Thumbnail Image.png
Description

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via well-established iterative phasing algorithms. Such a technique could have a significant impact on the field of biological structure determination since it avoids the need for a priori information from similar known structures, multiple measurements near resonant atomic absorption energies, isomorphic derivative crystals, or atomic-resolution data. Here, we demonstrate this phasing technique on diffraction patterns recorded from artificial two-dimensional microcrystals using the seeded soft x-ray free-electron laser FERMI. We show that the technique is effective when the illuminating wavefront has nonuniform phase and amplitude, and when the diffraction intensities cannot be measured uniformly throughout reciprocal space because of a limited signal-to-noise ratio.

ContributorsKirian, Richard (Author) / Bean, Richard J. (Author) / Beyerlein, Kenneth R. (Author) / Barthelmess, Miriam (Author) / Yoon, Chun Hong (Author) / Wang, Fenglin (Author) / Capotondi, Flavio (Author) / Pedersoli, Emanuele (Author) / Barty, Anton (Author) / Chapman, Henry N. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-12