This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 17 of 17
Filtering by

Clear all filters

128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
128424-Thumbnail Image.png
Description

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In this study, we develop new numerical algorithms to characterize the thermodynamics of urban nocturnal cooling based on solving the energy balance equations for both the landscape surface and the overlying atmosphere. Further, a scaling law is proposed to relate the UHI intensity to a range of governing mechanisms, including the vertical and horizontal transport of heat in the surface layer, the urban-rural breeze, and the possible urban expansion. The accuracy of proposed methods is evaluated against in-situ urban measurements collected in cities with different geographic and climatic conditions. It is found that the vertical and horizontal contributors modulate the nocturnal UHI at distinct elevation in the atmospheric boundary layer.

ContributorsWang, Zhi-Hua (Author) / Li, Qi (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-04
128276-Thumbnail Image.png
Description

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land–atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land–atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.

ContributorsSong, Jiyun (Author) / Wang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
128114-Thumbnail Image.png
Description

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQ[subscript S]. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQ[subscript S] flux well (RMSE values of ∼ 30 W m[superscript −2]). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Oechel, Walter C. (Author) / Grimmond, Sue (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-27
129459-Thumbnail Image.png
Description

Background: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity

Background: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity regarding its relationship to diverse pathologies.

Results: In this work, we have developed and validated a fully quantitative MSIA assay for MIF, and used it in the discovery and quantification of different proteoforms of MIF in serum samples, including cysteinylated and glycated MIF. The MSIA assay had a linear range of 1.56-50 ng/mL, and exhibited good precision, linearity, and recovery characteristics. The new assay was applied to a small cohort of human serum samples, and benchmarked against an MIF ELISA assay.

Conclusions: The quantitative MIF MSIA assay provides a sensitive, precise and high throughput method to delineate and quantify MIF proteoforms in biological samples.

ContributorsSherma, Nisha (Author) / Borges, Chad (Author) / Trenchevska, Olgica (Author) / Jarvis, Jason W. (Author) / Rehder, Douglas (Author) / Oran, Paul (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-10-14
129096-Thumbnail Image.png
Description

Background: Cystatin C (CysC) is an endogenous cysteine protease inhibitor that can be used to assess the progression of kidney function. Recent studies demonstrate that CysC is a more specific indicator of glomerular filtration rate (GFR) than creatinine. CysC in plasma exists in multiple proteoforms. The goal of this study was

Background: Cystatin C (CysC) is an endogenous cysteine protease inhibitor that can be used to assess the progression of kidney function. Recent studies demonstrate that CysC is a more specific indicator of glomerular filtration rate (GFR) than creatinine. CysC in plasma exists in multiple proteoforms. The goal of this study was to clarify the association of native CysC, CysC missing N-terminal Serine (CysC des-S), and CysC without three N-terminal residues (CysC des-SSP) with diabetic chronic kidney disease (CKD).

Results: Using mass spectrometric immunoassay, the plasma concentrations of native CysC and the two CysC truncation proteoforms were examined in 111 individuals from three groups: 33 non-diabetic controls, 34 participants with type 2 diabetes (DM) and without CKD and 44 participants with diabetic CKD. Native CysC concentrations were 1.4 fold greater in CKD compared to DM group (p = 0.02) and 1.5 fold greater in CKD compared to the control group (p = 0.001). CysC des-S concentrations were 1.55 fold greater in CKD compared to the DM group (p = 0.002) and 1.9 fold greater in CKD compared to the control group (p = 0.0002). CysC des-SSP concentrations were 1.8 fold greater in CKD compared to the DM group (p = 0.008) and 1.52 fold greater in CKD compared to the control group (p = 0.002). In addition, the concentrations of CysC proteoforms were greater in the setting of albuminuria. The truncated CysC proteoform concentrations were associated with estimated GFR independent of native CysC concentrations.

Conclusion: Our findings demonstrate a greater amount of CysC proteoforms in diabetic CKD. We therefore suggest assessing the role of cystatin C proteoforms in the progression of CKD.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / Dong, Zhiwei (Author) / Bashawri, Yara (Author) / Koska, Juraj (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2016-03-25
129155-Thumbnail Image.png
Description

The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for

The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.

ContributorsTrenchevska, Olgica (Author) / Schaab, Matthew (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2015-06-15