This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 27
Filtering by

Clear all filters

129508-Thumbnail Image.png
Description

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision and Change BioCore Guide—a set of general principles and specific statements that expand upon the core concepts, creating a framework that biology departments can use to align with the goals of Vision and Change. We used a grassroots approach to generate the BioCore Guide, beginning with faculty ideas as the basis for an iterative process that incorporated feedback from more than 240 biologists and biology educators at a diverse range of academic institutions throughout the United States. The final validation step in this process demonstrated strong national consensus, with more than 90% of respondents agreeing with the importance and scientific accuracy of the statements. It is our hope that the BioCore Guide will serve as an agent of change for biology departments as we move toward transforming undergraduate biology education.

ContributorsBrownell, Sara (Author) / Freeman, Scott (Author) / Wenderoth, Mary Pat (Author) / Crowe, Alison J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-01
129465-Thumbnail Image.png
Description

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI)

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD.

ContributorsShi, Jie (Author) / Stonnington, Cynthia M. (Author) / Thompson, Paul M. (Author) / Chen, Kewei (Author) / Gutman, Boris (Author) / Reschke, Cole (Author) / Baxter, Leslie C. (Author) / Reiman, Eric M. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129239-Thumbnail Image.png
Description

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members (National Science Foundation [NSF], 2013). Equity in the scientific research community is important for a variety of reasons; a diverse community of researchers can minimize the negative influence of bias in scientific reasoning, because people from different backgrounds approach a problem from different perspectives and can raise awareness regarding biases (Intemann, 2009). Additionally, by failing to be attentive to equity, we may exclude some of the best and brightest scientific minds and limit the pool of possible scientists (Intemann, 2009). Given this need for equity, how can our scientific research community become more inclusive?

ContributorsBangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
128826-Thumbnail Image.png
Description

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other’s mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

ContributorsGrunspan, Daniel Z. (Author) / Eddy, Sarah L. (Author) / Brownell, Sara (Author) / Wiggins, Benjamin L. (Author) / Crowe, Alison J. (Author) / Goodreau, Steven M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-10
128984-Thumbnail Image.png
Description

Background: Carriers of the APOE ε4 allele are at increased risk of developing Alzheimer’s disease (AD), and have been shown to have reduced cerebral metabolic rate of glucose (CMRgl) in the same brain areas frequently affected in AD. These individuals also exhibit reduced plasma levels of apolipoprotein E (apoE) attributed to

Background: Carriers of the APOE ε4 allele are at increased risk of developing Alzheimer’s disease (AD), and have been shown to have reduced cerebral metabolic rate of glucose (CMRgl) in the same brain areas frequently affected in AD. These individuals also exhibit reduced plasma levels of apolipoprotein E (apoE) attributed to a specific decrease in the apoE4 isoform as determined by quantification of individual apoE isoforms in APOE ε4 heterozygotes. Whether low plasma apoE levels are associated with structural and functional brain measurements and cognitive performance remains to be investigated.

Methods: Using quantitative mass spectrometry we quantified the plasma levels of total apoE and the individual apoE3 and apoE4 isoforms in 128 cognitively normal APOE ε3/ε4 individuals included in the Arizona APOE cohort. All included individuals had undergone extensive neuropsychological testing and 25 had in addition undergone FDG-PET and MRI to determine CMRgl and regional gray matter volume (GMV).

Results: Our results demonstrated higher apoE4 levels in females versus males and an age-dependent increase in the apoE3 isoform levels in females only. Importantly, a higher relative ratio of apoE4 over apoE3 was associated with GMV loss in the right posterior cingulate and with reduced CMRgl bilaterally in the anterior cingulate and in the right hippocampal area. Additional exploratory analysis revealed several negative associations between total plasma apoE, individual apoE isoform levels, GMV and CMRgl predominantly in the frontal, occipital and temporal areas. Finally, our results indicated only weak associations between apoE plasma levels and cognitive performance which further appear to be affected by sex.

Conclusions: Our study proposes a sex-dependent and age-dependent variation in plasma apoE isoform levels and concludes that peripheral apoE levels are associated with GMV, CMRgl and possibly cognitive performance in cognitively healthy individuals with a genetic predisposition to AD.

ContributorsNielsen, Henrietta M. (Author) / Chen, Kewei (Author) / Lee, Wendy (Author) / Chen, Yinghua (Author) / Bauer, Robert (Author) / Reiman, Eric (Author) / Caselli, Richard (Author) / Bu, Guojun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-12-21
128935-Thumbnail Image.png
Description

Background: We introduced a hypometabolic convergence index (HCI) to characterize in a single measurement the extent to which a person’s fluorodeoxyglucose positron emission tomogram (FDG PET) corresponds to that in Alzheimer’s disease (AD). Apolipoprotein E ε4 (APOE ε4) gene dose is associated with three levels of risk for late-onset AD. We

Background: We introduced a hypometabolic convergence index (HCI) to characterize in a single measurement the extent to which a person’s fluorodeoxyglucose positron emission tomogram (FDG PET) corresponds to that in Alzheimer’s disease (AD). Apolipoprotein E ε4 (APOE ε4) gene dose is associated with three levels of risk for late-onset AD. We explored the association between gene dose and HCI in cognitively normal ε4 homozygotes, heterozygotes, and non-carriers.

Methods: An algorithm was used to characterize and compare AD-related HCIs in cognitively normal individuals, including 36 ε4 homozygotes, 46 heterozygotes, and 78 non-carriers.

Results: These three groups differed significantly in their HCIs (ANOVA, p = 0.004), and there was a significant association between HCIs and gene dose (linear trend, p = 0.001).

Conclusions: The HCI is associated with three levels of genetic risk for late-onset AD. This supports the possibility of using a single FDG PET measurement to help in the preclinical detection and tracking of AD.

ContributorsSchraml, Frank (Author) / Chen, Kewei (Author) / Ayutyanont, Napatkamon (Author) / Auttawut, Roontiva (Author) / Langbaum, Jessica B. S. (Author) / Lee, Wendy (Author) / Liu, Xiaofen (Author) / Bandy, Dan (Author) / Reeder, Stephanie Q. (Author) / Alexander, Gene E. (Author) / Caselli, Richard J. (Author) / Fleisher, Adam S. (Author) / Reiman, Eric M. (Author) / Alzheimer's Disease Neuroimaging Initiative (Project) (Contributor)
Created2013-06-26
128885-Thumbnail Image.png
Description

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury

Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established.

Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.

Created2011-12-19
128863-Thumbnail Image.png
Description

The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium

The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium was investigated. We used a three-dimensional (3-D) organotypic model of human colonic epithelium that was previously validated and applied to study interactions between S. Typhimurium and the intestinal epithelium that lead to enteric salmonellosis. Using this model system, we show that L. reuteri protects the intestinal cells against the early stages of Salmonella infection and that this effect is significantly increased when L. reuteri is stimulated to produce reuterin from glycerol. More specifically, the reuterin-containing ferment of L. reuteri caused a reduction in Salmonella adherence and invasion (1 log unit), and intracellular survival (2 log units). In contrast, the L. reuteri ferment without reuterin stimulated growth of the intracellular Salmonella population with 1 log unit. The short-term exposure to reuterin or the reuterin-containing ferment had no observed negative impact on intestinal epithelial cell health. However, long-term exposure (24 h) induced a complete loss of cell-cell contact within the epithelial aggregates and compromised cell viability. Collectively, these results shed light on a potential role for reuterin in inhibiting Salmonella-induced intestinal infections and may support the combined application of glycerol and L. reuteri. While future in vitro and in vivo studies of reuterin on intestinal health should fine-tune our understanding of the mechanistic effects, in particular in the presence of a complex gut microbiota, this the first report of a reuterin effect on the enteric infection process in any mammalian cell type.

Created2012-05-31
128763-Thumbnail Image.png
Description

Purpose: PET (positron emission tomography) imaging researches of functional metabolism using fluorodeoxyglucose ([superscript 18]F-FDG) of animal brain are important in neuroscience studies. FDG-PET imaging studies are often performed on groups of rats, so it is desirable to establish an objective voxel-based statistical methodology for group data analysis.

Material and Methods: This study establishes

Purpose: PET (positron emission tomography) imaging researches of functional metabolism using fluorodeoxyglucose ([superscript 18]F-FDG) of animal brain are important in neuroscience studies. FDG-PET imaging studies are often performed on groups of rats, so it is desirable to establish an objective voxel-based statistical methodology for group data analysis.

Material and Methods: This study establishes a statistical parametric mapping (SPM) toolbox (plug-ins) named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain, in which an FDG-PET template and an intracranial mask image of rat brain in Paxinos & Watson space were constructed, and the default settings were modified according to features of rat brain. Compared to previous studies, our constructed rat brain template comprises not only the cerebrum and cerebellum, but also the whole olfactory bulb which made the later cognitive studies much more exhaustive. And with an intracranial mask image in the template space, the brain tissues of individuals could be extracted automatically. Moreover, an atlas space is used for anatomically labeling the functional findings in the Paxinos & Watson space. In order to standardize the template image with the atlas accurately, a synthetic FDG-PET image with six main anatomy structures is constructed from the atlas, which performs as a target image in the co-registration.

Results: The spatial normalization procedure is evaluated, by which the individual rat brain images could be standardized into the Paxinos & Watson space successfully and the intracranial tissues could also be extracted accurately. The practical usability of this toolbox is evaluated using FDG-PET functional images from rats with left side middle cerebral artery occlusion (MCAO) in comparison to normal control rats. And the two-sample t-test statistical result is almost related to the left side MCA.

Conclusion: We established a toolbox of SPM8 named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain.

ContributorsNie, Binbin (Author) / Liu, Hua (Author) / Chen, Kewei (Author) / Jiang, Xiaofeng (Author) / Shan, Baoci (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-26
128767-Thumbnail Image.png
Description

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed

This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance.

Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid-shear environment of microgravity is relevant to physical forces encountered by pathogens during the infection process, insights gained from this study could identify novel infectious disease mechanisms, with downstream benefits for the general public.

Created2013-12-04