This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

128842-Thumbnail Image.png
Description

The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in

The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance. At each time point, using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control) subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers.

ContributorsLi, Bolun (Author) / Shi, Jie (Author) / Gutman, Boris A. (Author) / Baxter, Leslie C. (Author) / Thompson, Paul M. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Alzheimer's Disease Neuroimaging Initiative (Project) (Contributor)
Created2016-04-11
128812-Thumbnail Image.png
Description

Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface

Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus) between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity disorder and attention-related learning disabilities in preterm neonates.

ContributorsShi, Jie (Author) / Wang, Yalin (Author) / Ceschin, Rafael (Author) / An, Xing (Author) / Lao, Yi (Author) / Vanderbilt, Douglas (Author) / Nelson, Marvin D. (Author) / Thompson, Paul M. (Author) / Panigrahy, Ashok (Author) / Lepore, Natasha (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-07-03
129241-Thumbnail Image.png
Description

In Ritual and Religion in the Making of Humanity, Roy Rappaport misses an opportunity to more tightly theorize the synergistic relationship between concepts of the divine, the psyches of ritual participants, and the adaptive dynamics of religious sociality. This paper proposes such a theory by drawing on implicit features of

In Ritual and Religion in the Making of Humanity, Roy Rappaport misses an opportunity to more tightly theorize the synergistic relationship between concepts of the divine, the psyches of ritual participants, and the adaptive dynamics of religious sociality. This paper proposes such a theory by drawing on implicit features of Rappaport’s account, fulfilling his goal of a “cybernetics of the holy.” I argue that concepts of the divine, when made authoritative for participants through ritual, have three important effects: they invite intense and meaningful reconstructions of personal identity according to paradigmatic examples; they act as a form of encoded social memory by organizing human relationship according to a “spiritual map”; and they provide the cognitive framework that make religious community organization robust, adaptive, and reproductive. We can characterize divine concepts as “specified absences” that ground each of these effects and link them together in a mutually-reinforcing set.

ContributorsCassell, Paul (Author) / Barrett, The Honors College (Contributor)
Created2013-11-30
129655-Thumbnail Image.png
Description

In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometty (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by

In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometty (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometry difference between diagnostic groups. Experimental results show that the new system has better performance than two publicly available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E(is an element of)4 allele (ApoE4), which is considered as the most prevalent risk factor for AD. Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our work provides a new MRI analysis tool that may help presymptomatic AD research.

ContributorsShi, Jie (Author) / Thompson, Paul M. (Author) / Gutman, Boris (Author) / Wang, Yalin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-09-09
129641-Thumbnail Image.png
Description

The conscientious are morally conflicted when their moral dilemmas or incommensurabilities, real or apparent, have not been resolved. But such doublemindedness need not lead to ethical disintegration or moral insensitivity. For one may develop the moral virtue of doublemindedness, the settled power to deliberate and act well while morally conflicted.

The conscientious are morally conflicted when their moral dilemmas or incommensurabilities, real or apparent, have not been resolved. But such doublemindedness need not lead to ethical disintegration or moral insensitivity. For one may develop the moral virtue of doublemindedness, the settled power to deliberate and act well while morally conflicted. Such action will be accompanied by both moral loss (perhaps 'dirty hands') and ethical gain (salubrious agental stability). In explaining the virtue's moral psychology I show, among other things, its consistency with wholeheartedness and the unity of the virtues. To broaden its claim to recognition, I show the virtue's consistency with diverse models of practical reason. In conclusion, Michael Walzer's interpretation of Hamlet's attitude toward Gertrude exemplifies this virtue in a fragmentary but nonetheless praiseworthy form.

ContributorsBeggs, Donald (Author) / Barrett, The Honors College (Contributor)
Created2013-10-28
128666-Thumbnail Image.png
Description

Rice is an essential crop in Ghana. Several aspects of rice have been studied to increase its production; however, the environmental aspects, including impact on climate change, have not been studied well. There is therefore a gap in knowledge, and hence the need for continuous research. By accessing academic portals,

Rice is an essential crop in Ghana. Several aspects of rice have been studied to increase its production; however, the environmental aspects, including impact on climate change, have not been studied well. There is therefore a gap in knowledge, and hence the need for continuous research. By accessing academic portals, such as Springer Open, InTech Open, Elsevier, and the Kwame Nkrumah University of Science and Technology’s offline campus library, 61 academic publications including peer reviewed journals, books, working papers, reports, etc. were critically reviewed. It was found that there is a lack of data on how paddy rice production systems affect greenhouse gas (GHG) emissions, particularly emissions estimation, geographical location, and crops. Regarding GHG emission estimation, the review identified the use of emission factors calibrated using temperate conditions which do not suit tropical conditions. On location, most research on rice GHG emissions have been carried out in Asia with little input from Africa. In regard to crops, there is paucity of in-situ emissions data from paddy fields in Ghana. Drawing on the review, a conceptual framework is developed using Ghana as reference point to guide the discussion on fertilizer application, water management rice cultivars, and soil for future development of adaptation strategies for rice emission reduction.

ContributorsBoateng, Kofi K. (Author) / Obeng, George Yaw (Author) / Mensah, Ebenezer (Author) / Barrett, The Honors College (Contributor)
Created2017-01-20
128529-Thumbnail Image.png
Description

Chronic manganese (Mn) exposure is associated with neuromotor and neurocognitive deficits, but the exact mechanism of Mn neurotoxicity is still unclear. With the advent of magnetic resonance imaging (MRI), in-vivo analysis of brain structures has become possible. Among different sub-cortical structures, the basal ganglia (BG) has been investigated as a

Chronic manganese (Mn) exposure is associated with neuromotor and neurocognitive deficits, but the exact mechanism of Mn neurotoxicity is still unclear. With the advent of magnetic resonance imaging (MRI), in-vivo analysis of brain structures has become possible. Among different sub-cortical structures, the basal ganglia (BG) has been investigated as a putative anatomical biomarker in MR-based studies of Mn toxicity. However, previous investigations have yielded inconsistent results in terms of regional MR signal intensity changes. These discrepancies may be due to the subtlety of brain alterations caused by Mn toxicity, coupled to analysis techniques that lack the requisite detection power. Here, based on brain MRI, we apply a 3D surface-based morphometry method on 3 bilateral basal ganglia structures in school-age children chronically exposed to Mn through drinking water to investigate the effect of Mn exposure on brain anatomy. Our method successfully pinpointed significant enlargement of many areas of the basal ganglia structures, preferentially affecting the putamen. Moreover, these areas showed significant correlations with fine motor performance, indicating a possible link between altered basal ganglia neurodevelopment and declined motor performance in high Mn exposed children.

ContributorsLao, Yi (Author) / Dion, Laurie-Anne (Author) / Gilbert, Guillaume (Author) / Bouchard, Maryse F. (Author) / Rocha, Gabriel (Author) / Wang, Yalin (Author) / Lepore, Natasha (Author) / Saint-Amour, Dave (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-02-03
129539-Thumbnail Image.png
Description

The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database—the Alzheimer's

The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database—the Alzheimer's Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling's T2 test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the nondemented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD.

ContributorsShi, Jie (Author) / Lepore, Natasha (Author) / Gutman, Boris A. (Author) / Thompson, Paul M. (Author) / Baxter, Leslie C. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-01
127973-Thumbnail Image.png
Description

Foodways have been a component of archaeological research for decades. However, cooking and food preparation, as specific acts that could reveal social information about life beyond the kitchen, only became a focus of archaeological inquiry more recently. A review of the literature on cooking and food preparation reveals a shift

Foodways have been a component of archaeological research for decades. However, cooking and food preparation, as specific acts that could reveal social information about life beyond the kitchen, only became a focus of archaeological inquiry more recently. A review of the literature on cooking and food preparation reveals a shift from previous studies on subsistence strategies, consumption, and feasting. The new research is different because of the social questions that are asked, the change in focus to preparation and production rather than consumption, and the interest in highlighting marginalized people and their daily experiences. The theoretical perspectives the literature addresses revolve around practice, agency, and gender. As a result, this new focus of archaeological research on cooking and preparing food is grounded in anthropology.

ContributorsGraff, Sarah (Author) / Barrett, The Honors College (Contributor)
Created2017-10-04
128112-Thumbnail Image.png
Description

Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed

Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer's disease.

ContributorsZhan, Liang (Author) / Liu, Yashu (Author) / Wang, Yalin (Author) / Zhou, Jiayu (Author) / Jahanshad, Neda (Author) / Ye, Jieping (Author) / Thompson, Paul M. (Author) / Alzheimer's Disease Neuroimaging Initiative (Project) (Contributor)
Created2015-07-24