This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 84
Filtering by

Clear all filters

129562-Thumbnail Image.png
Description

The objective of articulating sustainability visions through modeling is to enhance the outcomes and process of visioning in order to successfully move the system toward a desired state. Models emphasize approaches to develop visions that are viable and resilient and are crafted to adhere to sustainability principles. This approach is

The objective of articulating sustainability visions through modeling is to enhance the outcomes and process of visioning in order to successfully move the system toward a desired state. Models emphasize approaches to develop visions that are viable and resilient and are crafted to adhere to sustainability principles. This approach is largely assembled from visioning processes (resulting in descriptions of desirable future states generated from stakeholder values and preferences) and participatory modeling processes (resulting in systems-based representations of future states co-produced by experts and stakeholders). Vision modeling is distinct from normative scenarios and backcasting processes in that the structure and function of the future desirable state is explicitly articulated as a systems model. Crafting, representing and evaluating the future desirable state as a systems model in participatory settings is intended to support compliance with sustainability visioning quality criteria (visionary, sustainable, systemic, coherent, plausible, tangible, relevant, nuanced, motivational and shared) in order to develop rigorous and operationalizable visions. We provide two empirical examples to demonstrate the incorporation of vision modeling in research practice and education settings. In both settings, vision modeling was used to develop, represent, simulate and evaluate future desirable states. This allowed participants to better identify, explore and scrutinize sustainability solutions.

ContributorsIwaniec, David (Author) / Childers, Dan (Author) / VanLehn, Kurt (Author) / Wiek, Arnim (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2014-07-01
129574-Thumbnail Image.png
Description

It has become common for sustainability science and resilience theory to be considered as complementary approaches. Occasionally the terms have been used interchangeably. Although these two approaches share some working principles and objectives, they also are based on some distinct assumptions about the operation of systems and how we can

It has become common for sustainability science and resilience theory to be considered as complementary approaches. Occasionally the terms have been used interchangeably. Although these two approaches share some working principles and objectives, they also are based on some distinct assumptions about the operation of systems and how we can best guide these systems into the future. Each approach would benefit from some scholars keeping sustainability science and resilience theory separate and focusing on further developing their distinctiveness and other scholars continuing to explore them in combination. Three areas of research in which following different procedures might be beneficial are whether to prioritize outcomes or system dynamics, how best to take advantage of community input, and increasing the use of knowledge of the past as a laboratory for potential innovations.

Created2013-11-30
129581-Thumbnail Image.png
Description

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of social-ecological systems (SESs) is still underdeveloped. We seek to help fill this gap by exploring some patterns of transformation in SESs and the question of what factors help explain the persistence of cooperation in the use of common-pool resources through transformative change. Through the analysis of 89 forest commons in South Korea that experienced such transformations, we found that there are two broad types of transformation, cooperative and noncooperative. We also found that two system-level properties, transaction costs associated group size and network diversity, may affect the direction of transformation. SESs with smaller group sizes and higher network diversity may better organize cooperative transformations when the existing system becomes untenable.

ContributorsYu, David (Author) / Anderies, John (Author) / Lee, Dowon (Author) / Perez, Irene (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
129524-Thumbnail Image.png
Description

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this law breaks down when both the average flux and fluctuation become large. Here we demonstrate the failure of this law in small systems using real data and model complex networked systems, derive analytically a modified flux-fluctuation law, and validate it through computations of a large number of complex networked systems. Our law is more general in that its predictions agree with numerics and it reduces naturally to the previous law in the limit of large system size, leading to new insights into the flow dynamics in small-size complex systems with significant implications for the statistical and scaling behaviors of small systems, a topic of great recent interest.

ContributorsHuang, Zi-Gang (Author) / Dong, Jia-Qi (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-27
129481-Thumbnail Image.png
Description

There are growing demands for detailed and accurate land cover maps in land system research and planning. Macro-scale land cover maps normally cannot satisfy the studies that require detailed land cover maps at micro scales. In the meantime, applying conventional pixel-based classification methods in classifying high-resolution aerial imagery is ineffective

There are growing demands for detailed and accurate land cover maps in land system research and planning. Macro-scale land cover maps normally cannot satisfy the studies that require detailed land cover maps at micro scales. In the meantime, applying conventional pixel-based classification methods in classifying high-resolution aerial imagery is ineffective to develop high accuracy land-cover maps, especially in spectrally heterogeneous and complicated urban areas. Here we present an object-based approach that identifies land-cover types from 1-meter resolution aerial orthophotography and a 5-foot DEM. Our study area is Tippecanoe County in the State of Indiana, USA, which covers about a 1300 km[superscript 2] land area. We used a countywide aerial photo mosaic and normalized digital elevation model as input datasets in this study. We utilized simple algorithms to minimize computation time while maintaining relatively high accuracy in land cover mapping at a county scale. The aerial photograph was pre-processed using principal component transformation to reduce its spectral dimensionality. Vegetation and non-vegetation were separated via masks determined by the Normalized Difference Vegetation Index. A combination of segmentation algorithms with lower calculation intensity was used to generate image objects that fulfill the characteristics selection requirements. A hierarchical image object network was formed based on the segmentation results and used to assist the image object delineation at different spatial scales. Finally, expert knowledge regarding spectral, contextual, and geometrical aspects was employed in image object identification. The resultant land cover map developed with this object-based image analysis has more information classes and higher accuracy than that derived with pixel-based classification methods.

Created2014-11-01
129492-Thumbnail Image.png
Description

As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD) to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP) in Australia. We focus on eight design principles from common-pool resource (CPR) theory and other key

As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD) to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP) in Australia. We focus on eight design principles from common-pool resource (CPR) theory and other key social-ecological systems governance variables, and explore to what extent they help explain the social and ecological outcomes of park management through time. Our analysis showed that commercial fisheries management and the re-zoning of the GBRMP in 2004 led to improvements in ecological condition of the reef, particularly fisheries. These boundary and rights changes were supported by effective monitoring, sanctioning and conflict resolution. Moderate biophysical connectivity was also important for improved outcomes. However, our analysis also highlighted that continued challenges to improved ecological health in terms of coral cover and biodiversity can be explained by fuzzy boundaries between land and sea, and the significance of external drivers to even large-scale social-ecological systems (SES). While ecological and institutional fit in the marine SES was high, this was not the case when considering the coastal SES. Nested governance arrangements become even more important at this larger scale. To our knowledge, our paper provides the first analysis linking the re-zoning of the GBRMP to CPR and SES theory. We discuss important challenges to coding large-scale systems for meta-analysis.

Created2013-11-30
129325-Thumbnail Image.png
Description

Three studies examined the symbolic and self-presentational meaning of low-water-use residential landscaping in a desert city in the southwestern United States. We hypothesized that owners' water-intensive or water-conserving landscape choices would be seen to convey very different characteristics. Data indicated that these two types of residential landscapes led to substantially

Three studies examined the symbolic and self-presentational meaning of low-water-use residential landscaping in a desert city in the southwestern United States. We hypothesized that owners' water-intensive or water-conserving landscape choices would be seen to convey very different characteristics. Data indicated that these two types of residential landscapes led to substantially different attributions about homeowners and also that potential homeowners could use landscapes to convey an array of characteristics to a social audience. In general, water-intensive landscapes led to more positive attributions than did water-conserving landscapes. The results support the idea that landscaping choice may be guided by self-presentational considerations, and that such considerations might influence the adoption of high- or low-water-use landscapes.

ContributorsNeel, Rebecca (Author) / Sadalla, Edward (Author) / Berlin, Anna (Author) / Ledlow, Susan (Author) / Neufeld, Samantha (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2014-12-01
129346-Thumbnail Image.png
Description

An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two

An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes.

ContributorsYing, Lei (Author) / Wang, Guanglei (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-16
129347-Thumbnail Image.png
Description

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups,

Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

ContributorsDong, Jia-Qi (Author) / Huang, Zi-Gang (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-23
129348-Thumbnail Image.png
Description

In this paper, we discuss the theoretical relationships among interacting global change risks, valued livelihood goals, and adaptation limits. We build from research on the impacts of multiple and interacting global change risks in lesser-developed countries and seek to understand household adaptation limits in agrarian communities. We ask: What are

In this paper, we discuss the theoretical relationships among interacting global change risks, valued livelihood goals, and adaptation limits. We build from research on the impacts of multiple and interacting global change risks in lesser-developed countries and seek to understand household adaptation limits in agrarian communities. We ask: What are valued livelihood goals among smallholder farmers in Northwest Costa Rica? How do socio-economic determinants of adaptive capacities determine their ability to meet these goals in the face of the impacts of interacting global change risks? Our data were based on focus groups, interviews, survey responses from 94 smallholder farmers, government statistics, and published literature. We analyzed our data using qualitative content analysis and quantitative logistic regression models. Our analysis showed that farmers perceived rice production as an identity, and that they were being forced to consider limits to their abilities to adapt to maintain that identity. We found that farm size, cattle ownership, years spent farming, and household income variety were determinants of their abilities to remain in rice production while maintaining sufficient levels of livelihood security. We also showed that for those households most vulnerable to water scarcity, their ability to successfully adapt to meet valued livelihood goals is diminished because adaptation to water scarcity increases vulnerability to decreased rice-market access. In this way, they become trapped by the inability to reduce their vulnerability to risks of the interaction between global changes and therefore abandon valued identities and livelihoods.

Created2015-01-01