This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 26
Filtering by

Clear all filters

128003-Thumbnail Image.png
Description

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.

ContributorsTaylor, Sarah (Author) / Lewis, Candace (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-08
Description

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the Wistar Kyoto (WKY) control strain over a range of nicotine doses (0.0, 0.1, 0.3 and 0.6 mg/kg). Prior to conditioning, SHRs were more active and less biased toward one side of the CPP chamber than WKY rats. Following conditioning, SHRs developed CPP to the highest dose of nicotine (0.6 mg/kg), whereas WKYs did not develop CPP to any nicotine dose tested. During conditioning, SHRs displayed greater locomotor activity in the nicotine-paired compartment than in the saline-paired compartment across conditioning trials. SHRs that received nicotine (0.1, 0.3, 0.6 mg/kg) in the nicotine-paired compartment showed an increase in locomotor activity between conditioning trials. Nicotine did not significantly affect WKY locomotor activity. These findings suggest that the SHR strain is a suitable model for studying ADHD-related nicotine use and dependence, but highlights potential limitations of the WKY control strain and the CPP procedure for modeling ADHD-related nicotine reward.

ContributorsWatterson, Elizabeth (Author) / Daniels, Carter (Author) / Watterson, Lucas (Author) / Mazur, Gabriel (Author) / Brackney, Ryan (Author) / Olive, M. Foster (Author) / Sanabria, Federico (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-15
Description

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our understanding of such complex systems. However, the data at our disposal are often not easily comparable, have limited scope and scale, and are based on disparate underlying frameworks inhibiting synthesis, meta-analysis, and the validation of findings. Research efforts are further hampered when case inclusion criteria, variable definitions, coding schema, and inter-coder reliability testing are not made explicit in the presentation of research and shared among the research community. This paper first outlines challenges experienced by researchers engaged in a large-scale coding project; then highlights valuable lessons learned; and finally discusses opportunities for further research on comparative case study analysis focusing on social-ecological systems and common pool resources. Includes supplemental materials and appendices published in the International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016.

ContributorsRatajczyk, Elicia (Author) / Brady, Ute (Author) / Baggio, Jacopo (Author) / Barnett, Allain J. (Author) / Perez Ibarra, Irene (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
Description

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards understanding multiple-causation of CPR outcomes by analyzing 1) the co-occurrence of Design Principles (DP) by activity (irrigation, fishery and forestry), and 2) the combination(s) of DPs leading to social and ecological success. We analyzed 69 cases pertaining to three different activities: irrigation, fishery, and forestry. We find that the importance of the design principles is dependent upon the natural and hard human made infrastructure (i.e. canals, equipment, vessels etc.). For example, clearly defined social boundaries are important when the natural infrastructure is highly mobile (i.e. tuna fish), while monitoring is more important when the natural infrastructure is more static (i.e. forests or water contained within an irrigation system). However, we also find that congruence between local conditions and rules and proportionality between investment and extraction are key for CPR success independent from the natural and human hard made infrastructure. We further provide new visualization techniques for co-occurrence patterns and add to qualitative comparative analysis by introducing a reliability metric to deal with a large meta-analysis dataset on secondary data where information is missing or uncertain.

Includes supplemental materials and appendices publications in International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016

ContributorsBaggio, Jacopo (Author) / Barnett, Alain J. (Author) / Perez, Irene (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-09-09
128733-Thumbnail Image.png
Description

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

ContributorsWatterson, Lucas (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-30
128617-Thumbnail Image.png
Description

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and

Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.

ContributorsWinter, David (Author) / Pacheco, Maria Andreina (Author) / Vallejo, Andres F. (Author) / Schwartz, Rachel (Author) / Arevalo-Herrera, Myriam (Author) / Herrera, Socrates (Author) / Cartwright, Reed (Author) / Escalante, Ananias (Author) / Biodesign Institute (Contributor)
Created2015-12-28
127891-Thumbnail Image.png
Description

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also

Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system—homomorphic SI—can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI).

Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.

ContributorsFurstenau, Tara (Author) / Cartwright, Reed (Author) / Biodesign Institute (Contributor)
Created2017-11-24
128803-Thumbnail Image.png
Description

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density.

ContributorsGross, Kellie S. (Author) / Brandner, Dieter D. (Author) / Martinez, Luis A. (Author) / Olive, M. Foster (Author) / Meisel, Robert L. (Author) / Mermelstein, Paul G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-12
128778-Thumbnail Image.png
Description

Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems

Online communities are becoming increasingly important as platforms for large-scale human cooperation. These communities allow users seeking and sharing professional skills to solve problems collaboratively. To investigate how users cooperate to complete a large number of knowledge-producing tasks, we analyze Stack Exchange, one of the largest question and answer systems in the world. We construct attention networks to model the growth of 110 communities in the Stack Exchange system and quantify individual answering strategies using the linking dynamics on attention networks. We identify two answering strategies. Strategy A aims at performing maintenance by doing simple tasks, whereas strategy B aims at investing time in doing challenging tasks. Both strategies are important: empirical evidence shows that strategy A decreases the median waiting time for answers and strategy B increases the acceptance rate of answers. In investigating the strategic persistence of users, we find that users tends to stick on the same strategy over time in a community, but switch from one strategy to the other across communities. This finding reveals the different sets of knowledge and skills between users. A balance between the population of users taking A and B strategies that approximates 2:1, is found to be optimal to the sustainable growth of communities.

ContributorsWu, Lingfei (Author) / Baggio, Jacopo (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-03-02
129022-Thumbnail Image.png
Description

Background: Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection,

Background: Blindness has evolved repeatedly in cave-dwelling organisms, and many hypotheses have been proposed to explain this observation, including both accumulation of neutral loss-of-function mutations and adaptation to darkness. Investigating the loss of sight in cave dwellers presents an opportunity to understand the operation of fundamental evolutionary processes, including drift, selection, mutation, and migration.

Results: Here we model the evolution of blindness in caves. This model captures the interaction of three forces: (1) selection favoring alleles causing blindness, (2) immigration of sightedness alleles from a surface population, and (3) mutations creating blindness alleles. We investigated the dynamics of this model and determined selection-strength thresholds that result in blindness evolving in caves despite immigration of sightedness alleles from the surface. We estimate that the selection coefficient for blindness would need to be at least 0.005 (and maybe as high as 0.5) for blindness to evolve in the model cave-organism, Astyanax mexicanus.

Conclusions: Our results indicate that strong selection is required for the evolution of blindness in cave-dwelling organisms, which is consistent with recent work suggesting a high metabolic cost of eye development.

ContributorsCartwright, Reed (Author) / Schwartz, Rachel (Author) / Merry, Alexandra (Author) / Howell, Megan (Author) / Biodesign Institute (Contributor)
Created2017-02-07