This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 111
Filtering by

Clear all filters

129561-Thumbnail Image.png
Description

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-18
129568-Thumbnail Image.png
Description

We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may

We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may thus be necessary and important, for example, applying appropriate controls to bring the network to a normal state. However, due to couplings among the nodes, the measured time series, even from non-chaotic neurons, would appear random, rendering inapplicable traditional nonlinear time-series analysis, such as the delay-coordinate embedding method, which yields information about the global dynamics of the entire network. Our method is based on compressive sensing. In particular, we demonstrate that identifying chaotic elements can be formulated as a general problem of reconstructing the nodal dynamical systems, network connections and all coupling functions, as well as their weights. The working and efficiency of the method are illustrated by using networks of non-identical FitzHugh–Nagumo neurons with randomly-distributed coupling weights.

ContributorsSu, Riqi (Author) / Lai, Ying-Cheng (Author) / Wang, Xiao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-01
129514-Thumbnail Image.png
Description

We report the results of an ethnographic study of a natural food cooperative in which we found an inherent tension in its mission between idealism and pragmatism, and we explore the dynamics through which that tension was managed and engaged in day-to-day governance and activities. Insights from participant observation, archival

We report the results of an ethnographic study of a natural food cooperative in which we found an inherent tension in its mission between idealism and pragmatism, and we explore the dynamics through which that tension was managed and engaged in day-to-day governance and activities. Insights from participant observation, archival data, semi-structured interviews, and surveys provide a detailed and holistic account of the intergroup and intragroup processes through which the co-op negotiated its dualistic nature, as embodied in its hybrid organizational identity. The findings suggest that the value of each side of the duality was recognized at both the individual and organizational levels. Members’ discomfort with the duality, however, led them to split the mission in two and identify with one part, while projecting their less-favored part on others, creating an identity foil (an antithesis). This splitting resulted in ingroups and outgroups and heated intergroup conflict over realizing cooperative ideals vs. running a viable business. Ingroup members favoring one part of the mission nonetheless identified with the outgroup favoring the other because it embodied a side of themselves they continued to value. Individuals who exemplified their ingroup’s most extreme attributes were seen by the outgroup as prototypical, thus serving as “lightning rods” for intergroup conflict; this dynamic paradoxically enabled other ingroup members to work more effectively with moderate members of the outgroup. The idealist–pragmatist duality was kept continually in play over time through oscillating decisions and actions that shifted power from one group to the other, coupled with ongoing rituals to repair and maintain relationships disrupted by the messiness of the process. Thus ostensible dysfunctionality at the group level fostered functionality at the organizational level.

ContributorsAshforth, Blake (Author) / Reingen, J. (Author) / W.P. Carey School of Business (Contributor)
Created2014-09-01
129524-Thumbnail Image.png
Description

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this law breaks down when both the average flux and fluctuation become large. Here we demonstrate the failure of this law in small systems using real data and model complex networked systems, derive analytically a modified flux-fluctuation law, and validate it through computations of a large number of complex networked systems. Our law is more general in that its predictions agree with numerics and it reduces naturally to the previous law in the limit of large system size, leading to new insights into the flow dynamics in small-size complex systems with significant implications for the statistical and scaling behaviors of small systems, a topic of great recent interest.

ContributorsHuang, Zi-Gang (Author) / Dong, Jia-Qi (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-27
129462-Thumbnail Image.png
Description

We develop a general framework to analyze the controllability of multiplex networks using multiple-relation networks and multiple-layer networks with interlayer couplings as two classes of prototypical systems. In the former, networks associated with different physical variables share the same set of nodes and in the latter, diffusion processes take place.

We develop a general framework to analyze the controllability of multiplex networks using multiple-relation networks and multiple-layer networks with interlayer couplings as two classes of prototypical systems. In the former, networks associated with different physical variables share the same set of nodes and in the latter, diffusion processes take place. We find that, for a multiple-relation network, a layer exists that dominantly determines the controllability of the whole network and, for a multiple-layer network, a small fraction of the interconnections can enhance the controllability remarkably. Our theory is generally applicable to other types of multiplex networks as well, leading to significant insights into the control of complex network systems with diverse structures and interacting patterns.

ContributorsYuan, Zhengzhong (Author) / Zhao, Chen (Author) / Wang, Wen-Xu (Author) / Di, Zengru (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-24
129465-Thumbnail Image.png
Description

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI)

Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD.

ContributorsShi, Jie (Author) / Stonnington, Cynthia M. (Author) / Thompson, Paul M. (Author) / Chen, Kewei (Author) / Gutman, Boris (Author) / Reschke, Cole (Author) / Baxter, Leslie C. (Author) / Reiman, Eric M. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129469-Thumbnail Image.png
Description

Mobile applications markets with app stores have introduced a new approach to define and sell software applications with access to a large body of heterogeneous consumer population. This research examines key seller- and app-level characteristics that impact success in an app store market. We tracked individual apps and their presence

Mobile applications markets with app stores have introduced a new approach to define and sell software applications with access to a large body of heterogeneous consumer population. This research examines key seller- and app-level characteristics that impact success in an app store market. We tracked individual apps and their presence in the top-grossing 300 chart in Apple's App Store and examined how factors at different levels affect the apps' survival in the top 300 chart. We used a generalized hierarchical modeling approach to measure sales performance, and confirmed the results with the use of a hazard model and a count regression model. We find that broadening app offerings across multiple categories is a key determinant that contributes to a higher probability of survival in the top charts. App-level attributes such as free app offers, high initial ranks, investment in less-popular (less-competitive) categories, continuous quality updates, and high-volume and high-user review scores have positive effects on apps' sustainability. In general, each diversification decision across a category results in an approximately 15 percent increase in the presence of an app in the top charts. Survival rates for free apps are up to two times more than that for paid apps. Quality (feature) updates to apps can contribute up to a threefold improvement in survival rate as well. A key implication of the results of this study is that sellers must utilize the natural segmentation in consumer tastes offered by the different categories to improve sales performance.

ContributorsLee, Gun-woong (Author) / Santanam, Raghu (Author) / W.P. Carey School of Business (Contributor)
Created2013-11-30
129477-Thumbnail Image.png
Description

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

ContributorsCheng, Hongyan (Author) / Yao, Nan (Author) / Huang, Zi-Gang (Author) / Park, Junpyo (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-15
129490-Thumbnail Image.png
Description

The current research examines how the price of a medication influences consumers’ beliefs about their own disease risk—a critical question with new laws mandating greater price transparency for health care goods and services. Four studies reveal that consumers believe that lifesaving health goods are priced according to perceived need (i.e.,

The current research examines how the price of a medication influences consumers’ beliefs about their own disease risk—a critical question with new laws mandating greater price transparency for health care goods and services. Four studies reveal that consumers believe that lifesaving health goods are priced according to perceived need (i.e., communal-sharing principles) and that price consequently influences risk perceptions and intentions to consume care. Specifically, consumers believe that lower medication prices signal greater accessibility to anyone in need, and such accessibility thus makes them feel that their own self-risk is elevated, increasing consumption. The reverse is true for higher prices. Importantly, these effects are limited to self-relevant health threats and reveal that consumers make inconsistent assumptions about risk, prevalence, and need with price exposure. These findings suggest that while greater price transparency may indeed reduce consumption of higher-priced goods, it may do so for both necessary and unnecessary care.

ContributorsSamper, Adriana (Author) / Schwartz, Janet A. (Author) / W.P. Carey School of Business (Contributor)
Created2012-11-14
129491-Thumbnail Image.png
Description

Consumers often face situations in which their feelings of personal control are threatened. In such contexts, what role should products play in helping consumers pursue their goals (e.g., losing weight, maintaining a clean home)? Across five studies, we challenge the traditional view that low control is detrimental to effort and

Consumers often face situations in which their feelings of personal control are threatened. In such contexts, what role should products play in helping consumers pursue their goals (e.g., losing weight, maintaining a clean home)? Across five studies, we challenge the traditional view that low control is detrimental to effort and demonstrate that consumers prefer products that require them to engage in hard work when feelings of control are low. Such high-effort products reassure individuals that desired outcomes are possible while also enabling them to feel as if they have driven their own outcomes. We also identify important boundary conditions, finding that both the nature of individuals' thoughts about control and their perceived rate of progress toward goals are important factors in the desire to exert increased effort.

ContributorsCutright, Keisha M. (Author) / Samper, Adriana (Author) / W.P. Carey School of Business (Contributor)
Created2014-10-01