This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 48
Filtering by

Clear all filters

Description

This article develops a welfare theoretic framework for interpreting evidence on the impacts of public programs on housing markets. We extend Rosen's hedonic model to explain how housing prices capitalize exogenous shocks to public goods and externalities. The model predicts that trading between heterogeneous buyers and sellers will drive a

This article develops a welfare theoretic framework for interpreting evidence on the impacts of public programs on housing markets. We extend Rosen's hedonic model to explain how housing prices capitalize exogenous shocks to public goods and externalities. The model predicts that trading between heterogeneous buyers and sellers will drive a wedge between these “capitalization effects” and welfare changes. We test this hypothesis in the context of changes in measures of school quality in five metropolitan areas. Results from boundary discontinuity designs suggest that capitalization effects understate parents’ willingness to pay for public school improvements by as much as 75%.

ContributorsKuminoff, Nicolai (Author) / Pope, Jaren C. (Author) / W.P. Carey School of Business (Contributor)
Created2014-11-01
129245-Thumbnail Image.png
Description

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

ContributorsChang, Jui-Yung (Author) / Basu, Soumyadipta (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-07
128589-Thumbnail Image.png
Description

Increasing levels of financial inequality prompt questions about the relationship between income and well-being. Using a twins sample from the Survey of Midlife Development in the U. S. and controlling for personality as core self-evaluations (CSE), we found that men, but not women, had higher subjective financial well-being (SFWB) when

Increasing levels of financial inequality prompt questions about the relationship between income and well-being. Using a twins sample from the Survey of Midlife Development in the U. S. and controlling for personality as core self-evaluations (CSE), we found that men, but not women, had higher subjective financial well-being (SFWB) when they had higher incomes. This relationship was due to ‘unshared environmental’ factors rather than genes, suggesting that the effect of income on SFWB is driven by unique experiences among men. Further, for women and men, we found that CSE influenced income and SFWB, and that both genetic and environmental factors explained this relationship. Given the relatively small and male-specific relationship between income and SFWB, and the determination of both income and SFWB by personality, we propose that policy makers focus on malleable factors beyond merely income in order to increase SFWB, including financial education and building self-regulatory capacity.

ContributorsZyphur, Michael J. (Author) / Li, Wen-Dong (Author) / Zhang, Zhen (Author) / Arvey, Richard D. (Author) / Barsky, Adam P. (Author) / W.P. Carey School of Business (Contributor)
Created2015-09-29
128582-Thumbnail Image.png
Description

The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the

The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the paper reviews the data from single cell recordings – in cortical columns and of category-selective and multisensory neurons. In neuroscience, columns in the neocortex (cortical columns) are understood to be a basic functional/computational unit. The paper reviews the fundamental discoveries about the columnar organization and finds that it reveals a massively parallel search mechanism. This columnar organization could be the most extensive neurophysiological evidence for the widespread use of localist representation in the brain. The paper also reviews studies of category-selective cells. The evidence for category-selective cells reveals that localist representation is also used to encode complex abstract concepts at the highest levels of processing in the brain. A third major issue is the nature of the cognitive system in the brain and whether there is a form that is purely abstract and encoded by single cells. To provide evidence for a single-cell based purely abstract cognitive system, the paper reviews some of the findings related to multisensory cells. It appears that there is widespread usage of multisensory cells in the brain in the same areas where sensory processing takes place. Plus there is evidence for abstract modality invariant cells at higher levels of cortical processing. Overall, that reveals the existence of a purely abstract cognitive system in the brain. The paper also argues that since there is no evidence for dense distributed representation and since sparse representation is actually used to encode memories, there is actually no evidence for distributed representation in the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel, distributed computing system that is symbolic. The paper also explains how grounded cognition and other theories of the brain are fully compatible with localist representation and a purely abstract cognitive system.

ContributorsRoy, Asim (Author) / W.P. Carey School of Business (Contributor)
Created2017-02-16
129329-Thumbnail Image.png
Description

This paper studies an infinite-horizon repeated moral hazard problem where a single principal employs several agents. We assume that the principal cannot observe the agents' effort choices; however, agents can observe each other and can be contractually required to make observation reports to the principal. Observation reports, if truthful, can

This paper studies an infinite-horizon repeated moral hazard problem where a single principal employs several agents. We assume that the principal cannot observe the agents' effort choices; however, agents can observe each other and can be contractually required to make observation reports to the principal. Observation reports, if truthful, can serve as a monitoring instrument to discipline the agents. However, reports are cheap talk so that it is also possible for agents to collude, i.e., where they shirk, earn rents, and report otherwise to the principal. The main result of the paper constructs a class of collusion-proof contracts with two properties. First, equilibrium payoffs to both the principal and the agents approach their first-best benchmarks as the discount factor tends to unity. These payoff bounds apply to all subgame perfect equilibria in the game induced by the contract. Second, while equilibria themselves depend on the discount factor, the contract that induces these equilibria is independent of the discount factor.

ContributorsChandrasekher, Madhav (Author) / W.P. Carey School of Business (Contributor)
Created2015-01-01
129319-Thumbnail Image.png
Description

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

ContributorsBasu, Soumyadipta (Author) / Yang, Yue (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-19
129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129304-Thumbnail Image.png
Description

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

ContributorsGallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Sims, Patrick (Author) / Aoki, Toshihiro (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-02
129295-Thumbnail Image.png
Description

This paper traces the history of mortgage law in the United States. I explore the history of foreclosure procedures, redemption periods, restrictions on deficiency judgments, and foreclosure moratoria. The historical record shows that the most enduring aspects of mortgage law stem from case law rather than statute. In particular, the

This paper traces the history of mortgage law in the United States. I explore the history of foreclosure procedures, redemption periods, restrictions on deficiency judgments, and foreclosure moratoria. The historical record shows that the most enduring aspects of mortgage law stem from case law rather than statute. In particular, the ability of creditors to foreclose nonjudicially is determined very early in states’ histories, usually before the Civil War, and usually in case law. In contrast, the aspects of mortgage law developed through statute change more frequently. This finding calls into question whether common law is inherently more flexible than the civil-law system used in some other countries. However, case law tends to be less responsive to populist pressures than statutes. My findings suggest that the reason common law favors financial development is unlikely to be its greater flexibility relative to law made by statute.

ContributorsGhent, Andra (Author) / W.P. Carey School of Business (Contributor)
Created2014-11-01
129292-Thumbnail Image.png
Description

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced with the help of the film-coupled metamaterial structure, resulting in significant improvement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The performance of the proposed light trapping structure is demonstrated to be little affected by the grating ridge width considering the geometric tolerance during fabrication. The optical absorption at oblique incidences also shows direction-insensitive behavior, which is highly desired for efficiently converting off-normal sunlight to electricity. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

ContributorsWang, Hao (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01