This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 33
Filtering by

Clear all filters

Description

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks

A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Xu, Shouhuai (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-20
Description

Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load requirement for resources and consequently, to problems such as low

Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load requirement for resources and consequently, to problems such as low efficiency, resource scarcity, and partial system failures. Under certain conditions global catastrophe on the scale of the whole system can occur through the dynamical process of cascading failures. We investigate optimization and resilience of time-varying supply-demand systems by constructing network models of such systems, where resources are transported from the supplier sites to users through various links. Here by optimization we mean minimization of the maximum load on links, and system resilience can be characterized using the cascading failure size of users who fail to connect with suppliers.

We consider two representative classes of supply schemes: load driven supply and fix fraction supply. Our findings are: (1) optimized systems are more robust since relatively smaller cascading failures occur when triggered by external perturbation to the links; (2) a large fraction of links can be free of load if resources are directed to transport through the shortest paths; (3) redundant links in the performance of the system can help to reroute the traffic but may undesirably transmit and enlarge the failure size of the system; (4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific location of the trigger determines the specific route of cascading failure, but has little effect on the final cascading size; (6) system expansion typically reduces the efficiency; and (7) when the locations of the suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold for heterogeneous networks in general, providing insights into designing optimal and resilient complex supply-demand systems that expand constantly in time.

ContributorsZhang, Si-Ping (Author) / Huang, Zi-Gang (Author) / Dong, Jia-Qi (Author) / Eisenberg, Daniel (Author) / Seager, Thomas (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-23
129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129304-Thumbnail Image.png
Description

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

ContributorsGallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Sims, Patrick (Author) / Aoki, Toshihiro (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-02
128800-Thumbnail Image.png
Description

Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify

Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify the costs of analyses, and robust industrial platforms that are reproducible across laboratories. Presented here is an MS-based quantitative IGF1 assay with performance rating of >1,000 samples/day, and a capability of quantifying IGF1 point mutations and posttranslational modifications. The throughput of the IGF1 mass spectrometric immunoassay (MSIA) benefited from a simplified sample preparation step, IGF1 immunocapture in a tip format, and high-throughput MALDI-TOF MS analysis. The Limit of Detection and Limit of Quantification of the resulting assay were 1.5 μg/L and 5 μg/L, respectively, with intra- and inter-assay precision CVs of less than 10%, and good linearity and recovery characteristics. The IGF1 MSIA was benchmarked against commercially available IGF1 ELISA via Bland-Altman method comparison test, resulting in a slight positive bias of 16%. The IGF1 MSIA was employed in an optimized parallel workflow utilizing two pipetting robots and MALDI-TOF-MS instruments synced into one-hour phases of sample preparation, extraction and MSIA pipette tip elution, MS data collection, and data processing. Using this workflow, high-throughput IGF1 quantification of 1,054 human samples was achieved in approximately 9 hours. This rate of assaying is a significant improvement over existing MS-based IGF1 assays, and is on par with that of the enzyme-based immunoassays. Furthermore, a mutation was detected in ∼1% of the samples (SNP: rs17884626, creating an A→T substitution at position 67 of the IGF1), demonstrating the capability of IGF1 MSIA to detect point mutations and posttranslational modifications.

ContributorsOran, Paul (Author) / Trenchevska, Olgica (Author) / Nedelkov, Dobrin (Author) / Borges, Chad (Author) / Schaab, Matthew (Author) / Rehder, Douglas (Author) / Jarvis, Jason (Author) / Sherma, Nisha (Author) / Shen, Luhui (Author) / Krastins, Bryan (Author) / Lopez, Mary F. (Author) / Schwenke, Dawn (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Biodesign Institute (Contributor)
Created2014-03-24
128773-Thumbnail Image.png
Description

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form amyloid. However, the relative abundance of truncated SAA in diabetes and chronic kidney disease is not known.

Methods: Using mass spectrometric immunoassay, the abundance of SAA truncations relative to the native variants was examined in plasma of 91 participants with type 2 diabetes and chronic kidney disease and 69 participants without diabetes.

Results: The ratio of SAA 1.1 (missing N-terminal arginine) to native SAA 1.1 was lower in diabetics compared to non-diabetics (p = 0.004), and in males compared to females (p<0.001). This ratio was negatively correlated with glycated hemoglobin (r = −0.32, p<0.001) and triglyceride concentrations (r = −0.37, p<0.001), and positively correlated with HDL cholesterol concentrations (r = 0.32, p<0.001).

Conclusion: The relative abundance of the N-terminal arginine truncation of SAA1.1 is significantly decreased in diabetes and negatively correlates with measures of glycemic and lipid control.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / He, Huijuan (Author) / Borges, Chad (Author) / Nedelkov, Dobrin (Author) / Mack, Wendy (Author) / Kono, Naoko (Author) / Koska, Juraj (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Biodesign Institute (Contributor)
Created2015-01-21
129233-Thumbnail Image.png
Description

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel interaction scheme where the oscillators are coupled through only one variable or a symmetric set of variables. Using the standard framework of master-stability function (MSF), we investigate the emergence of complex synchronization behaviors under all possible configurations

Most previous works on complete synchronization of chaotic oscillators focused on the one-channel interaction scheme where the oscillators are coupled through only one variable or a symmetric set of variables. Using the standard framework of master-stability function (MSF), we investigate the emergence of complex synchronization behaviors under all possible configurations of two-channel coupling, which include, for example, all possible cross coupling schemes among the dynamical variables. Utilizing the classic Rössler and Lorenz oscillators, we find a rich variety of synchronization phenomena not present in any previously extensively studied, single-channel coupling configurations. For example, in many cases two coupling channels can enhance or even generate synchronization where there is only weak or no synchronization under only one coupling channel, which has been verified in a coupled neuron system. There are also cases where the oscillators are originally synchronized under one coupling channel, but an additional synchronizable coupling channel can, however, destroy synchronization. Direct numerical simulations of actual synchronization dynamics verify the MSF-based predictions. Our extensive computation and heuristic analysis provide an atlas for synchronization of chaotic oscillators coupled through two channels, which can be used as a systematic reference to facilitate further research in this area.

ContributorsYang, Wenchao (Author) / Huang, Zi-Gang (Author) / Wang, Xingang (Author) / Huang, Liang (Author) / Yang, Lei (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-18
128933-Thumbnail Image.png
Description

Introduction: Apolipoprotein C-III (apoC-III) regulates triglyceride (TG) metabolism. In plasma, apoC-III exists in non-sialylated (apoC-III0a without glycosylation and apoC-III[subscript 0b] with glycosylation), monosialylated (apoC-III1) or disialylated (apoC-III2) proteoforms. Our aim was to clarify the relationship between apoC-III sialylation proteoforms with fasting plasma TG concentrations.

Methods: In 204 non-diabetic adolescent participants, the

Introduction: Apolipoprotein C-III (apoC-III) regulates triglyceride (TG) metabolism. In plasma, apoC-III exists in non-sialylated (apoC-III0a without glycosylation and apoC-III[subscript 0b] with glycosylation), monosialylated (apoC-III1) or disialylated (apoC-III2) proteoforms. Our aim was to clarify the relationship between apoC-III sialylation proteoforms with fasting plasma TG concentrations.

Methods: In 204 non-diabetic adolescent participants, the relative abundance of apoC-III plasma proteoforms was measured using mass spectrometric immunoassay.

Results: Compared with the healthy weight subgroup (n = 16), the ratios of apoC-III0a, apoC-III0b, and apoC-III1 to apoC-III2 were significantly greater in overweight (n = 33) and obese participants (n = 155). These ratios were positively correlated with BMI z-scores and negatively correlated with measures of insulin sensitivity (S[subscript i]). The relationship of apoC-III1 / apoC-III2 with Si persisted after adjusting for BMI (p = 0.02). Fasting TG was correlated with the ratio of apoC-III0a / apoC-III2 (r = 0.47, p<0.001), apoC-III0b / apoC-III2 (r = 0.41, p<0.001), apoC-III1 / apoC-III2 (r = 0.43, p<0.001). By examining apoC-III concentrations, the association of apoC-III proteoforms with TG was driven by apoC-III0a (r = 0.57, p<0.001), apoC-III0b (r = 0.56. p<0.001) and apoC-III1 (r = 0.67, p<0.001), but not apoC-III2 (r = 0.006, p = 0.9) concentrations, indicating that apoC-III relationship with plasma TG differed in apoC-III2 compared with the other proteoforms.

Conclusion: We conclude that apoC-III0a, apoC-III0b, and apoC-III1, but not apoC-III2 appear to be under metabolic control and associate with fasting plasma TG. Measurement of apoC-III proteoforms can offer insights into the biology of TG metabolism in obesity.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / Ramrakhiani, Ambika (Author) / Parekh, Aarushi (Author) / Koska, Juraj (Author) / Walker, Ryan W. (Author) / Billheimer, Dean (Author) / Reaven, Peter D. (Author) / Yen, Frances T. (Author) / Nelson, Randall (Author) / Goran, Michael I. (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2015-12-03
128687-Thumbnail Image.png
Description

Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural

Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.

ContributorsTrenchevska, Olgica (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2016-03-17
129427-Thumbnail Image.png
Description

The compositional dependence of the lowest direct and indirect band gaps in Ge1-ySny alloys has been determined from room-temperature photoluminescence measurements. This technique is particularly attractive for a comparison of the two transitions because distinct features in the spectra can be associated with the direct and indirect gaps. However, detailed

The compositional dependence of the lowest direct and indirect band gaps in Ge1-ySny alloys has been determined from room-temperature photoluminescence measurements. This technique is particularly attractive for a comparison of the two transitions because distinct features in the spectra can be associated with the direct and indirect gaps. However, detailed modeling of these room temperature spectra is required to extract the band gap values with the high accuracy required to determine the Sn concentration yc at which the alloy becomes a direct gap semiconductor. For the direct gap, this is accomplished using a microscopic model that allows the determination of direct gap energies with meV accuracy. For the indirect gap, it is shown that current theoretical models are inadequate to describe the emission properties of systems with close indirect and direct transitions. Accordingly, an ad hoc procedure is used to extract the indirect gap energies from the data. For y < 0.1 the resulting direct gap compositional dependence is given by ΔE0 = −(3.57 ± 0.06)y (in eV). For the indirect gap, the corresponding expression is ΔEind = −(1.64 ± 0.10)y (in eV). If a quadratic function of composition is used to express the two transition energies over the entire compositional range 0 ≤ y ≤ 1, the quadratic (bowing) coefficients are found to be b0 = 2.46 ± 0.06 eV (for E0) and bind = 1.03 ± 0.11 eV (for Eind). These results imply a crossover concentration yc = $0.073 [+0.007 over -0.006], much lower than early theoretical predictions based on the virtual crystal approximation, but in better agreement with predictions based on large atomic supercells.

ContributorsJiang, L. (Author) / Gallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Aoki, Toshihiro (Author) / Mathews, J. (Author) / Kouvetakis, John (Author) / Menéndez, Jose (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-01