This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 33
Filtering by

Clear all filters

129533-Thumbnail Image.png
Description

Novel hydride chemistries are employed to deposit light-emitting Ge1-y Snyalloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold

Novel hydride chemistries are employed to deposit light-emitting Ge1-y Snyalloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold (and higher) decrease in lattice mismatch between film and virtual substrate, allowing direct integration of bulk-like crystals with planar surfaces and relatively low dislocation densities. For y ≤ 0.06, the CVD precursors used were digermane Ge2H6 and deuterated stannane SnD4. For y ≥ 0.06, the Ge precursor was changed to trigermane Ge3H8, whose higher reactivity enabled the fabrication of supersaturated samples with the target film parameters. In all cases, the Ge wafers were produced using tetragermane Ge4H10 as the Ge source. The photoluminescence intensity from Ge1-y Sny /Ge films is expected to increase relative to Ge1-y Sny /Si due to the less defected interface with the virtual substrate. However, while Ge1-y Sny /Si films are largely relaxed, a significant amount of compressive strain may be present in the Ge1-y Sny /Ge case. This compressive strain can reduce the emission intensity by increasing the separation between the direct and indirect edges. In this context, it is shown here that the proposed CVD approach to Ge1-y Sny /Ge makes it possible to approach film thicknesses of about 1  μm, for which the strain is mostly relaxed and the photoluminescence intensity increases by one order of magnitude relative to Ge1-y Sny /Si films. The observed strain relaxation is shown to be consistent with predictions from strain-relaxation models first developed for the Si1-x Gex /Si system. The defect structure and atomic distributions in the films are studied in detail using advanced electron-microscopy techniques, including aberration corrected STEM imaging and EELS mapping of the average diamond–cubic lattice.

ContributorsSenaratne, Charutha Lasitha (Author) / Gallagher, J. D. (Author) / Jiang, Liying (Author) / Aoki, Toshihiro (Author) / Smith, David (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-10-07
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
129304-Thumbnail Image.png
Description

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

ContributorsGallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Sims, Patrick (Author) / Aoki, Toshihiro (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-02
129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129427-Thumbnail Image.png
Description

The compositional dependence of the lowest direct and indirect band gaps in Ge1-ySny alloys has been determined from room-temperature photoluminescence measurements. This technique is particularly attractive for a comparison of the two transitions because distinct features in the spectra can be associated with the direct and indirect gaps. However, detailed

The compositional dependence of the lowest direct and indirect band gaps in Ge1-ySny alloys has been determined from room-temperature photoluminescence measurements. This technique is particularly attractive for a comparison of the two transitions because distinct features in the spectra can be associated with the direct and indirect gaps. However, detailed modeling of these room temperature spectra is required to extract the band gap values with the high accuracy required to determine the Sn concentration yc at which the alloy becomes a direct gap semiconductor. For the direct gap, this is accomplished using a microscopic model that allows the determination of direct gap energies with meV accuracy. For the indirect gap, it is shown that current theoretical models are inadequate to describe the emission properties of systems with close indirect and direct transitions. Accordingly, an ad hoc procedure is used to extract the indirect gap energies from the data. For y < 0.1 the resulting direct gap compositional dependence is given by ΔE0 = −(3.57 ± 0.06)y (in eV). For the indirect gap, the corresponding expression is ΔEind = −(1.64 ± 0.10)y (in eV). If a quadratic function of composition is used to express the two transition energies over the entire compositional range 0 ≤ y ≤ 1, the quadratic (bowing) coefficients are found to be b0 = 2.46 ± 0.06 eV (for E0) and bind = 1.03 ± 0.11 eV (for Eind). These results imply a crossover concentration yc = $0.073 [+0.007 over -0.006], much lower than early theoretical predictions based on the virtual crystal approximation, but in better agreement with predictions based on large atomic supercells.

ContributorsJiang, L. (Author) / Gallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Aoki, Toshihiro (Author) / Mathews, J. (Author) / Kouvetakis, John (Author) / Menéndez, Jose (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-01
128868-Thumbnail Image.png
Description

Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains

Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains (CH1-3) of human IgG (pHu-E16scFv-CH1-3) and a tetravalent molecule (Tetra pHu-E16) assembled from pHu-E16scFv-CH1-3 with a second pHu-E16scFv fused to the light chain (LC) constant region. pHu-E16scFv-CH1-3 and Tetra pHu-E16 were efficiently expressed and assembled in plants. To assess the impact of differences in N-linked glycosylation on pHu-E16 variant assembly and function, we expressed additional pHu-E16 variants with various combinations of HC and LC components.

Our study revealed that proper pairing of HC and LC was essential for the complete N-glycan processing of antibodies in both plant and animal cells. Associated with their distinct N-glycoforms, pHu-E16, pHu-E16scFv-CH1-3 and Tetra pHu-E16 exhibited differential binding to C1q and specific Fcγ receptors (FcγR). Notably, none of the plant-derived Hu-E16 variants showed antibody-dependent enhancement (ADE) activity in CD32A+ human cells, suggesting the potential of plant-produced antibodies to minimize the adverse effect of ADE. Importantly, all plant-derived MAb variants exhibited at least equivalent in vitro neutralization and in vivo protection in mice compared to mammalian cell-produced Hu-E16. This study demonstrates the capacity of plants to express and assemble a large, complex and functional IgG-like tetravalent mAb variant and also provides insight into the relationship between MAb N-glycosylation, FcγR and C1q binding, and ADE. These new insights may allow the development of safer and cost effective MAb-based therapeutics for flaviviruses, and possibly other pathogens.

ContributorsHe, Junyun (Author) / Lai, Huafang (Author) / Gorlatov, Sergey (Author) / Gruber, Clemens (Author) / Steinkellner, Herta (Author) / Diamond, Michael S. (Author) / Chen, Qiang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-03-27
129110-Thumbnail Image.png
Description

Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this

Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

Created2014-11-30
129123-Thumbnail Image.png
Description

The Ni/NiO core/shell structure is one of the most efficient co-catalysts for solar water splitting when coupled with suitable semiconducting oxides. It has been shown that pretreated Ni/NiO core/shell structures are more active than pure Ni metal, pure NiO or mixed dispersion of Ni metal and NiO nanoparticles. However, Ni/NiO

The Ni/NiO core/shell structure is one of the most efficient co-catalysts for solar water splitting when coupled with suitable semiconducting oxides. It has been shown that pretreated Ni/NiO core/shell structures are more active than pure Ni metal, pure NiO or mixed dispersion of Ni metal and NiO nanoparticles. However, Ni/NiO core/shell structures on TiO2 are only able to generate H2 but not O2 in aqueous water. The nature of the hydrogen evolution reaction in these systems was investigated by correlating photochemical H2 production with atomic resolution structure determined with aberration corrected electron microscopy. It was found that the core/shell structure plays an important role for H2 generation but the system undergoes deactivation due to a loss of metallic Ni. During the H2 evolution reaction, the metal core initially formed partial voids which grew and eventually all the Ni diffused out of the core-shell into solution leaving an inactive hollow NiO void structure. The H2 evolution was generated by a photochemical reaction involving photocorrosion of Ni metal.

ContributorsCrozier, Peter (Author) / Zhang, Liuxian (Author) / Aoki, Toshihiro (Author) / Liu, Qianlang (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015
Description

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the Wistar Kyoto (WKY) control strain over a range of nicotine doses (0.0, 0.1, 0.3 and 0.6 mg/kg). Prior to conditioning, SHRs were more active and less biased toward one side of the CPP chamber than WKY rats. Following conditioning, SHRs developed CPP to the highest dose of nicotine (0.6 mg/kg), whereas WKYs did not develop CPP to any nicotine dose tested. During conditioning, SHRs displayed greater locomotor activity in the nicotine-paired compartment than in the saline-paired compartment across conditioning trials. SHRs that received nicotine (0.1, 0.3, 0.6 mg/kg) in the nicotine-paired compartment showed an increase in locomotor activity between conditioning trials. Nicotine did not significantly affect WKY locomotor activity. These findings suggest that the SHR strain is a suitable model for studying ADHD-related nicotine use and dependence, but highlights potential limitations of the WKY control strain and the CPP procedure for modeling ADHD-related nicotine reward.

ContributorsWatterson, Elizabeth (Author) / Daniels, Carter (Author) / Watterson, Lucas (Author) / Mazur, Gabriel (Author) / Brackney, Ryan (Author) / Olive, M. Foster (Author) / Sanabria, Federico (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-15