This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 24
Filtering by

Clear all filters

129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129304-Thumbnail Image.png
Description

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device

The emission properties of GeSn heterostructure pin diodes have been investigated. The devices contain thick (400–600 nm) Ge1-y Sny i-layers spanning a broad compositional range below and above the crossover Sn concentration yc where the Ge1-y Sny alloy becomes a direct-gap material. These results are made possible by an optimized device architecture containing a single defected interface thereby mitigating the deleterious effects of mismatch-induced defects. The observed emission intensities as a function of composition show the contributions from two separate trends: an increase in direct gap emission as the Sn concentration is increased, as expected from the reduction and eventual reversal of the separation between the direct and indirect edges, and a parallel increase in non-radiative recombination when the mismatch strains between the structure components is partially relaxed by the generation of misfit dislocations. An estimation of recombination times based on the observed electroluminescence intensities is found to be strongly correlated with the reverse-bias dark current measured in the same devices.

ContributorsGallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Sims, Patrick (Author) / Aoki, Toshihiro (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-02
128663-Thumbnail Image.png
Description

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope.

ContributorsZhao, Qunshan (Author) / Myint, Soe (Author) / Wentz, Elizabeth (Author) / Fan, Chao (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-18
128657-Thumbnail Image.png
Description

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and cooled to further understand how LULC change influences the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced the most significant LST changes during the study period are primarily on the outskirts of the Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and impervious surfaces from all other LULC types has been identified as the primary cause of the UHI effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat flux. We suggest that urban planners, decision-makers, and city managers formulate new policies and regulations that encourage residential, commercial, and industrial developers to include more vegetation when planning new construction.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / Wang, Zhi-Hua (Author) / Song, Jiyun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-26
128653-Thumbnail Image.png
Description

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical,

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical, and infrastructural characteristics. Because the interactions between urban and surrounding areas are complex, a synoptic and spatial view offered from remote sensing is integral to measuring, modeling, and understanding these relationships. Here we focus on three themes in urban remote sensing science: mapping, indices, and modeling. For mapping we describe the data sources, methods, and limitations of mapping urban boundaries, land use and land cover, population, temperature, and air quality. Second, we described how spectral information is manipulated to create comparative biophysical, social, and spatial indices of the urban environment. Finally, we focus how the mapped information and indices are used as inputs or parameters in models that measure changes in climate, hydrology, land use, and economics.

ContributorsWentz, Elizabeth (Author) / Anderson, Sharolyn (Author) / Fragkias, Michail (Author) / Netzband, Maik (Author) / Mesev, Victor (Author) / Myint, Soe (Author) / Quattrochi, Dale (Author) / Rahman, Atiqur (Author) / Seto, Karen C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
128710-Thumbnail Image.png
Description

Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation

Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation area in Myanmar was 21,178.8 km2, with an annual deforestation rate of 0.81%, and that the total forest carbon release was 20.06 million tons, with an annual rate of 0.37%. Mangrove forests had the highest deforestation and carbon release rates, and deciduous forests had both the largest deforestation area and largest amount of carbon release. During the study period, the south and southwestern regions of Myanmar, especially Ayeyarwady and Rakhine, were deforestation hotspots (i.e., the highest deforestation and carbon release rates occurred in these regions). Deforestation caused significant carbon release, reduced evapotranspiration (ET), and increased land surface temperatures (LSTs) in deforested areas in Myanmar during the study period. Constructive policy recommendations are put forward based on these research results.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-02
129427-Thumbnail Image.png
Description

The compositional dependence of the lowest direct and indirect band gaps in Ge1-ySny alloys has been determined from room-temperature photoluminescence measurements. This technique is particularly attractive for a comparison of the two transitions because distinct features in the spectra can be associated with the direct and indirect gaps. However, detailed

The compositional dependence of the lowest direct and indirect band gaps in Ge1-ySny alloys has been determined from room-temperature photoluminescence measurements. This technique is particularly attractive for a comparison of the two transitions because distinct features in the spectra can be associated with the direct and indirect gaps. However, detailed modeling of these room temperature spectra is required to extract the band gap values with the high accuracy required to determine the Sn concentration yc at which the alloy becomes a direct gap semiconductor. For the direct gap, this is accomplished using a microscopic model that allows the determination of direct gap energies with meV accuracy. For the indirect gap, it is shown that current theoretical models are inadequate to describe the emission properties of systems with close indirect and direct transitions. Accordingly, an ad hoc procedure is used to extract the indirect gap energies from the data. For y < 0.1 the resulting direct gap compositional dependence is given by ΔE0 = −(3.57 ± 0.06)y (in eV). For the indirect gap, the corresponding expression is ΔEind = −(1.64 ± 0.10)y (in eV). If a quadratic function of composition is used to express the two transition energies over the entire compositional range 0 ≤ y ≤ 1, the quadratic (bowing) coefficients are found to be b0 = 2.46 ± 0.06 eV (for E0) and bind = 1.03 ± 0.11 eV (for Eind). These results imply a crossover concentration yc = $0.073 [+0.007 over -0.006], much lower than early theoretical predictions based on the virtual crystal approximation, but in better agreement with predictions based on large atomic supercells.

ContributorsJiang, L. (Author) / Gallagher, J. D. (Author) / Senaratne, Charutha Lasitha (Author) / Aoki, Toshihiro (Author) / Mathews, J. (Author) / Kouvetakis, John (Author) / Menéndez, Jose (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-01
128375-Thumbnail Image.png
Description

Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Herein, the earth-abundant solar cell device, Cu2ZnSnS(4-x)Sex, is reported, which shows a high abundance of

Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Herein, the earth-abundant solar cell device, Cu2ZnSnS(4-x)Sex, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu2ZnSnSe4.

ContributorsAguiar, Jeffery A. (Author) / Patel, Maulik (Author) / Aoki, Toshihiro (Author) / Wozny, Sarah (Author) / Al-Jassim, Mowafak (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-02
128506-Thumbnail Image.png
Description

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent,

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent, orographic precipitation adjustment over Mexico and parts of Canada, and reduction of transboundary discontinuities. The impacts of adjusting gridded precipitation for orographic effects are quantified by scaling precipitation to an elevation-aware 1981-2010 precipitation climatology in Mexico and Canada. Differences are evaluated in terms of total precipitation as well as by hydrologic quantities simulated with a land surface model. Overall, orographic correction impacts total precipitation by up to 50% in mountainous regions outside CONUS. Hydrologic fluxes show sensitivities of similar magnitude, with discharge more sensitive than evapotranspiration and soil moisture. Because of the consistent gridding methodology, the current product reduces transboundary discontinuities as compared with a commonly used reanalysis product, making it suitable for estimating large-scale hydrometeorologic phenomena.

ContributorsLivneh, Ben (Author) / Bohn, Theodore (Author) / Pierce, David W. (Author) / Munoz-Arriola, Francisco (Author) / Nijssen, Bart (Author) / Vose, Russell (Author) / Cayan, Daniel R. (Author) / Brekke, Levi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-18
128492-Thumbnail Image.png
Description

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

ContributorsTuna, Aslihan (Author) / Wu, Kedi (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Cai, Hui (Author) / Aoki, Toshihiro (Author) / Horzum, Seyda (Author) / Kang, Jun (Author) / Peeters, Francois M. (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-05