This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 23 of 23
Filtering by

Clear all filters

129618-Thumbnail Image.png
Description

A fundamental result in the evolutionary-game paradigm of cyclic competition in spatially extended ecological systems, as represented by the classic Reichenbach-Mobilia-Frey (RMF) model, is that high mobility tends to hamper or even exclude species coexistence. This result was obtained under the hypothesis that individuals move randomly without taking into account

A fundamental result in the evolutionary-game paradigm of cyclic competition in spatially extended ecological systems, as represented by the classic Reichenbach-Mobilia-Frey (RMF) model, is that high mobility tends to hamper or even exclude species coexistence. This result was obtained under the hypothesis that individuals move randomly without taking into account the suitability of their local environment. We incorporate local habitat suitability into the RMF model and investigate its effect on coexistence. In particular, we hypothesize the use of “basic instinct” of an individual to determine its movement at any time step. That is, an individual is more likely to move when the local habitat becomes hostile and is no longer favorable for survival and growth. We show that, when such local habitat suitability is taken into account, robust coexistence can emerge even in the high-mobility regime where extinction is certain in the RMF model. A surprising finding is that coexistence is accompanied by the occurrence of substantial empty space in the system. Reexamination of the RMF model confirms the necessity and the important role of empty space in coexistence. Our study implies that adaptation/movements according to local habitat suitability are a fundamental factor to promote species coexistence and, consequently, biodiversity.

ContributorsPark, Junpyo (Author) / Do, Younghae (Author) / Huang, Zi-Gang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014
129602-Thumbnail Image.png
Description

In this article we consider the current educational needs for science and policy in marine resource management, and we propose a way to address them. The existing literature on cross-disciplinary education in response to pressing environmental problems is vast, particularly in conservation biology. However, actual changes in doctoral-level marine science

In this article we consider the current educational needs for science and policy in marine resource management, and we propose a way to address them. The existing literature on cross-disciplinary education in response to pressing environmental problems is vast, particularly in conservation biology. However, actual changes in doctoral-level marine science programs lag behind this literature considerably. This is in part because of concerns about the time investment in cross-disciplinary education and about the job prospects offered by such programs. There is also a more fundamental divide between educational programs that focus on knowledge generation and those that focus on professional development, which can reinforce the gap in communication between scientists and marine resource managers. Ultimately, transdisciplinary graduate education programs need not only to bridge the divide between disciplines, but also between types of knowledge. Our proposed curriculum aligns well with these needs because it does not sacrifice depth for breadth, and it emphasizes collaboration and communication among diverse groups of students, in addition to development of their individual knowledge and skills.

ContributorsCiannelli, Lorenzo (Author) / Hunsicker, Mary (Author) / Beaudreau, Anne (Author) / Bailey, Kevin (Author) / Crowder, Larry B. (Author) / Finley, Carmel (Author) / Webb, Colleen (Author) / Reynolds, John (Author) / Sagmiller, Kay (Author) / Anderies, John (Author) / Hawthorne, David (Author) / Parrish, Julia (Author) / Heppell, Selina (Author) / Conway, Flaxen (Author) / Chigbu, Paulinus (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-29
129219-Thumbnail Image.png
Description

Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics

Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics is used to investigate the complex transient dynamics of the population response. Though simple, our modeling approach exhibits a surprisingly rich and diverse array of dynamics. Our results highlight the critical roles played by diversity in strategies and the magnitude of the shift. Importantly, it allows for a variety of strategies to arise organically as an integral part of the transient dynamics-as opposed to an independent process-of population response to a regime shift, providing a link between the population's past and future diversity patterns. Several combinations of different populations' strategy distributions and shifts were systematically investigated. Such rich dynamics highlight the challenges of anticipating the response of a divided population to a change. The findings in this paper can potentially improve our understanding of a wide range of socio-ecological and technological transitions.

Created2015-07-10