This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 21
Filtering by

Clear all filters

129013-Thumbnail Image.png
Description

Background: Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging

Background: Juvenile hormone (JH) has been demonstrated to control adult lifespan in a number of non-model insects where surgical removal of the corpora allata eliminates the hormone’s source. In contrast, little is known about how juvenile hormone affects adult Drosophila melanogaster. Previous work suggests that insulin signaling may modulate Drosophila aging in part through its impact on juvenile hormone titer, but no data yet address whether reduction of juvenile hormone is sufficient to control Drosophila life span. Here we adapt a genetic approach to knock out the corpora allata in adult Drosophila melanogaster and characterize adult life history phenotypes produced by reduction of juvenile hormone. With this system we test potential explanations for how juvenile hormone modulates aging.

Results: A tissue specific driver inducing an inhibitor of a protein phosphatase was used to ablate the corpora allata while permitting normal development of adult flies. Corpora allata knockout adults had greatly reduced fecundity, inhibited oogenesis, impaired adult fat body development and extended lifespan. Treating these adults with the juvenile hormone analog methoprene restored all traits toward wildtype. Knockout females remained relatively long-lived even when crossed into a genotype that blocked all egg production. Dietary restriction further extended the lifespan of knockout females. In an analysis of expression profiles of knockout females in fertile and sterile backgrounds, about 100 genes changed in response to loss of juvenile hormone independent of reproductive state.

Conclusions: Reduced juvenile hormone alone is sufficient to extend the lifespan of Drosophila melanogaster. Reduced juvenile hormone limits reproduction by inhibiting the production of yolked eggs, and this may arise because juvenile hormone is required for the post-eclosion development of the vitellogenin-producing adult fat body. Our data do not support a mechanism for juvenile hormone control of longevity simply based on reducing the physiological costs of egg production. Nor does the longevity benefit appear to function through mechanisms by which dietary restriction extends longevity. We identify transcripts that change in response to juvenile hormone independent of reproductive state and suggest these represent somatically expressed genes that could modulate how juvenile hormone controls persistence and longevity.

ContributorsYamamoto, Rochelle (Author) / Bai, Hua (Author) / Dolezal, Adam (Author) / Amdam, Gro (Author) / Tatar, Marc (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-07-17
128910-Thumbnail Image.png
Description

Recent advancements in genomics provide new tools for evolutionary ecological research. The paper wasp genus Polistes is a model for social insect evolution and behavioral ecology. We developed RNA interference (RNAi)-mediated gene silencing to explore proposed connections between expression of hexameric storage proteins and worker vs. gyne (potential future foundress)

Recent advancements in genomics provide new tools for evolutionary ecological research. The paper wasp genus Polistes is a model for social insect evolution and behavioral ecology. We developed RNA interference (RNAi)-mediated gene silencing to explore proposed connections between expression of hexameric storage proteins and worker vs. gyne (potential future foundress) castes in naturally-founded colonies of P. metricus. We extended four fragments of putative hexamerin-encoding P. metricus transcripts acquired from a previous study and fully sequenced a gene that encodes Hexamerin 2, one of two proposed hexameric storage proteins of P. metricus. MALDI-TOF/TOF, LC-MSMS, deglycosylation, and detection of phosphorylation assays showed that the two putative hexamerins diverge in peptide sequence and biochemistry. We targeted the hexamerin 2 gene in 5th (last)-instar larvae by feeding RNAi-inducing double-stranded hexamerin 2 RNA directly to larvae in naturally-founded colonies in the field. Larval development and adult traits were not significantly altered in hexamerin 2 knockdowns, but there were suggestive trends toward increased developmental time and less developed ovaries, which are gyne characteristics. By demonstrating how data acquisition from 454/Roche pyrosequencing can be combined with biochemical and proteomics assays and how RNAi can be deployed successfully in field experiments on Polistes, our results pave the way for functional genomic research that can contribute significantly to learning the interactions of environment, development, and the roles they play in paper wasp evolution and behavioral ecology.

ContributorsHunt, James H. (Author) / Mutti, Navdeep (Author) / Havukainen, Heli (Author) / Henshaw, Michael T. (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-11-01
128638-Thumbnail Image.png
Description

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present cepip, a joint likelihood framework, for estimating a variant’s regulatory probability in a context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-nucleotide polymorphisms, we improve the statistical power of the gene-based association test.

ContributorsLi, Mulin Jun (Author) / Li, Miaoxin (Author) / Liu, Zipeng (Author) / Yan, Bin (Author) / Pan, Zhicheng (Author) / Huang, Dandan (Author) / Liang, Qian (Author) / Ying, Dingge (Author) / Xu, Feng (Author) / Yao, Hongcheng (Author) / Wang, Panwen (Author) / Kocher, Jean-Pierre A. (Author) / Xia, Zhengyuan (Author) / Sham, Pak Chung (Author) / Liu, Jun S. (Author) / Wang, Junwen (Author) / College of Health Solutions (Contributor)
Created2017-03-16
128532-Thumbnail Image.png
Description

Accumulating data from genome-wide association studies (GWAS) have provided a collection of novel candidate genes associated with complex diseases, such as atherosclerosis. We identified an atherosclerosis-associated single-nucleotide polymorphism (SNP) located in the intron of the long noncoding RNA (lncRNA) LINC00305 by searching the GWAS database. Although the function of LINC00305

Accumulating data from genome-wide association studies (GWAS) have provided a collection of novel candidate genes associated with complex diseases, such as atherosclerosis. We identified an atherosclerosis-associated single-nucleotide polymorphism (SNP) located in the intron of the long noncoding RNA (lncRNA) LINC00305 by searching the GWAS database. Although the function of LINC00305 is unknown, we found that LINC00305 expression is enriched in atherosclerotic plaques and monocytes. Overexpression of LINC00305 promoted the expression of inflammation-associated genes in THP-1 cells and reduced the expression of contractile markers in co-cultured human aortic smooth muscle cells (HASMCs). We showed that overexpression of LINC00305 activated nuclear factor-kappa beta (NF-κB) and that inhibition of NF-κB abolished LINC00305-mediated activation of cytokine expression. Mechanistically, LINC00305 interacted with lipocalin-1 interacting membrane receptor (LIMR), enhanced the interaction of LIMR and aryl-hydrocarbon receptor repressor (AHRR), and promoted protein expression as well as nuclear localization of AHRR. Moreover, LINC00305 activated NF-κB exclusively in the presence of LIMR and AHRR. In light of these findings, we propose that LINC00305 promotes monocyte inflammation by facilitating LIMR and AHRR cooperation and the AHRR activation, which eventually activates NF-κB, thereby inducing HASMC phenotype switching.

ContributorsZhang, Dan-Dan (Author) / Wang, Wen-Tian (Author) / Xiong, Jian (Author) / Xie, Xue-Min (Author) / Cui, Shen-Shen (Author) / Zhao, Zhi-Guo (Author) / Li, Mulin Jun (Author) / Zhang, Zhu-Qin (Author) / Hao, De-Long (Author) / Zhao, Xiang (Author) / Li, Yong-Jun (Author) / Wang, Junwen (Author) / Chen, Hou-Zao (Author) / Lv, Xiang (Author) / Liu, De-Pei (Author) / College of Health Solutions (Contributor)
Created2017-04-10
127987-Thumbnail Image.png
Description

Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is

Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which—together with confocal microscopy and flow cytometry—allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

ContributorsHystad, Eva Marit (Author) / Salmela, Heli (Author) / Amdam, Gro (Author) / Munch, Daniel (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-09-06
128295-Thumbnail Image.png
Description

Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provide a source of phenotypic plasticity in many species. The honey bee (Apis mellifera) uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens)

Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provide a source of phenotypic plasticity in many species. The honey bee (Apis mellifera) uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens) and the workers. The workers are functionally sterile females that can take on a range of distinct physiological and/or behavioral phenotypes in response to environmental changes. Honey bees have a wide repertoire of epigenetic mechanisms which, as in mammals, include cytosine methylation, hydroxymethylated cytosines, together with the enzymatic machinery responsible for these cytosine modifications. Current data suggests that honey bees provide an excellent system for studying the “social repertoire” of the epigenome. In this review, we elucidate what is known so far about the honey bee epigenome and its mechanisms. Our discussion includes what may distinguish honey bees from other model animals, how the epigenome can influence worker behavioral task separation, and how future studies can answer central questions about the role of the epigenome in social behavior.

ContributorsRasmussen, Erik M. K. (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-06
128355-Thumbnail Image.png
Description

Infection after renal transplantation remains a major cause of morbidity and death, especially infection from the extensively drug-resistant bacteria, A. baumannii. A total of fourteen A. baumannii isolates were isolated from the donors’ preserved fluid from DCD (donation after cardiac death) renal transplantation and four isolates in the recipients’ draining

Infection after renal transplantation remains a major cause of morbidity and death, especially infection from the extensively drug-resistant bacteria, A. baumannii. A total of fourteen A. baumannii isolates were isolated from the donors’ preserved fluid from DCD (donation after cardiac death) renal transplantation and four isolates in the recipients’ draining liquid at the Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, from March 2013 to November 2014. An outbreak of A. baumannii emerging after DCD renal transplantation was tracked to understand the transmission of the pathogen. PFGE displayed similar DNA patterns between isolates from the same hospital. Antimicrobial susceptibility tests against thirteen antimicrobial agents were determined using the K-B diffusion method and eTest. Whole-genome sequencing was applied to investigate the genetic relationship of the isolates. With the clinical data and research results, we concluded that the A. baumannii isolates 3R1 and 3R2 was probably transmitted from the donor who acquired the bacteria during his stay in the ICU, while isolate 4R1 was transmitted from 3R1 and 3R2 via medical manipulation. This study demonstrated the value of integration of clinical profiles with molecular methods in outbreak investigation and their importance in controlling infection and preventing serious complications after DCD transplantation.

ContributorsJiang, Hong (Author) / Cao, Luxi (Author) / Qu, Lihui (Author) / Qu, Tingting (Author) / Liu, Guangjun (Author) / Wang, Rending (Author) / Li, Bingjue (Author) / Wang, Yuchen (Author) / Ying, Chaoqun (Author) / Chen, Miao (Author) / Lu, Yingying (Author) / Feng, Shi (Author) / Xiao, Yonghong (Author) / Wang, Junwen (Author) / Wu, Jianyong (Author) / Chen, Jianghua (Author) / College of Health Solutions (Contributor)
Created2017-05-16
128353-Thumbnail Image.png
Description

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that are associated with ceRNA's function using Geuvaids RNA-seq data for 462 individuals from the 1000 Genomes Project. We call these loci competing endogenous RNA expression quantitative trait loci or ‘cerQTL’, and found that a large number of them were unexplored in conventional eQTL mapping. We identified many cerQTLs that have undergone recent positive selection in different human populations, and showed that single nucleotide polymorphisms in gene 3΄UTRs at the miRNA seed binding regions can simultaneously regulate gene expression changes in both cis and trans by the ceRNA mechanism. We also discovered that cerQTLs are significantly enriched in traits/diseases associated variants reported from genome-wide association studies in the miRNA binding sites, suggesting that disease susceptibilities could be attributed to ceRNA regulation. Further in vitro functional experiments demonstrated that a cerQTL rs11540855 can regulate ceRNA function. These results provide a comprehensive catalog of functional non-coding regulatory variants that may be responsible for ceRNA crosstalk at the post-transcriptional level.

ContributorsLi, Mulin Jun (Author) / Zhang, Jian (Author) / Liang, Qian (Author) / Xuan, Chenghao (Author) / Wu, Jiexing (Author) / Jiang, Peng (Author) / Li, Wei (Author) / Zhu, Yun (Author) / Wang, Panwen (Author) / Fernandez, Daniel (Author) / Shen, Yujun (Author) / Chen, Yiwen (Author) / Kocher, Jean-Pierre A. (Author) / Yu, Ying (Author) / Sham, Pak Chung (Author) / Wang, Junwen (Author) / Liu, Jun S. (Author) / Liu, X. Shirley (Author) / College of Health Solutions (Contributor)
Created2017-05-02
128347-Thumbnail Image.png
Description

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that integration of in-house metalloproteomics and quantitative proteomics allows comprehensive uncovering of the bismuth-associated proteomes, including 63 bismuth-binding and 119 bismuth-regulated proteins from Helicobacter pylori, with over 60% being annotated with catalytic functions. Through bioinformatics analysis in combination with bioassays, we demonstrated that bismuth drugs disrupted multiple essential pathways in the pathogen, including ROS defence and pH buffering, by binding and functional perturbation of a number of key enzymes. Moreover, we discovered that HpDnaK may serve as a new target of bismuth drugs to inhibit bacterium-host cell adhesion. The integrative approach we report, herein, provides a novel strategy to unveil the molecular mechanisms of antimicrobial metals against pathogens in general. This study sheds light on the design of new types of antimicrobial agents with multiple targets to tackle the current crisis of antimicrobial resistance.

ContributorsWang, Yuchuan (Author) / Hu, Ligang (Author) / Xu, Feng (Author) / Quan, Quan (Author) / Lai, Yau-Tsz (Author) / Xia, Wei (Author) / Yang, Ya (Author) / Chang, Yuen-Yan (Author) / Yang, Xinming (Author) / Chai, Zhifang (Author) / Wang, Junwen (Author) / Chu, Ivan K. (Author) / Li, Hongyan (Author) / Sun, Hongzhe (Author) / College of Health Solutions (Contributor)
Created2017-04-19
128340-Thumbnail Image.png
Description

Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive downstream analysis. In the present study, we first proposed three novel algorithms, sequence gap-filled gene feature annotation, bit-block encoded genotypes

Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive downstream analysis. In the present study, we first proposed three novel algorithms, sequence gap-filled gene feature annotation, bit-block encoded genotypes and sectional fast access to text lines to address three fundamental problems. The three algorithms then formed the infrastructure of a robust parallel computing framework, KGGSeq, for integrating downstream analysis functions for whole genome sequencing data. KGGSeq has been equipped with a comprehensive set of analysis functions for quality control, filtration, annotation, pathogenic prediction and statistical tests. In the tests with whole genome sequencing data from 1000 Genomes Project, KGGSeq annotated several thousand more reliable non-synonymous variants than other widely used tools (e.g. ANNOVAR and SNPEff). It took only around half an hour on a small server with 10 CPUs to access genotypes of ∼60 million variants of 2504 subjects, while a popular alternative tool required around one day. KGGSeq's bit-block genotype format used 1.5% or less space to flexibly represent phased or unphased genotypes with multiple alleles and achieved a speed of over 1000 times faster to calculate genotypic correlation.

ContributorsLi, Miaoxin (Author) / Li, Jiang (Author) / Li, Mulin Jun (Author) / Pan, Zhicheng (Author) / Hsu, Jacob Shujui (Author) / Liu, Dajiang J. (Author) / Zhan, Xiaowei (Author) / Wang, Junwen (Author) / Song, Youqiang (Author) / Sham, Pak Chung (Author) / College of Health Solutions (Contributor)
Created2017-01-23