This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 20
Filtering by

Clear all filters

Description

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare.

Background: Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid.

Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides.

Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

ContributorsRoss, Caitlin R. (Author) / DeFelice, Dominick S. (Author) / Hunt, Greg J. (Author) / Ihle, Kate (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-21
Description

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality

Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.

Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.

Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.

ContributorsSadd, Ben M. (Author) / Barribeau, Seth M. (Author) / Bloch, Guy (Author) / de Graaf, Dirk C. (Author) / Dearden, Peter (Author) / Elsik, Christine G. (Author) / Gadau, Juergen (Author) / Grimmelikhuijzen, Cornelis J. P. (Author) / Hasselmann, Martin (Author) / Lozier, Jeffrey D. (Author) / Robertson, Hugh M. (Author) / Smagghe, Guy (Author) / Stolle, Eckart (Author) / Van Vaerenbergh, Matthias (Author) / Waterhouse, Robert M. (Author) / Bornberg-Bauer, Erich (Author) / Klasberg, Steffen (Author) / Bennett, Anna K. (Author) / Camara, Francisco (Author) / Guigo, Roderic (Author) / Hoff, Katharina (Author) / Mariotti, Marco (Author) / Munoz-Torres, Monica (Author) / Murphy, Terence (Author) / Santesmasses, Didac (Author) / Amdam, Gro (Author) / Beckers, Matthew (Author) / Beye, Martin (Author) / Biewer, Matthias (Author) / Bitondi, Marcia MG (Author) / Blaxter, Mark L. (Author) / Bourke, Andrew FG (Author) / Brown, Mark JF (Author) / Buechel, Severine D. (Author) / Cameron, Rossanah (Author) / Cappelle, Kaat (Author) / Carolan, James C. (Author) / Christiaens, Olivier (Author) / Ciborowski, Kate L. (Author) / Clarke, David F. (Author) / Colgan, Thomas J. (Author) / Collins, David H. (Author) / Cridge, Andrew G. (Author) / Dalmay, Tamas (Author) / Dreier, Stephanie (Author) / du Plessis, Louis (Author) / Duncan, Elizabeth (Author) / Erler, Silvio (Author) / Evans, Jay (Author) / Falcon, Talgo (Author) / Flores, Kevin (Author) / Freitas, Flavia CP (Author) / Fuchikawa, Taro (Author) / Gempe, Tanja (Author) / Hartfelder, Klaus (Author) / Hauser, Frank (Author) / Helbing, Sophie (Author) / Humann, Fernanda (Author) / Irvine, Frano (Author) / Jermiin, Lars S (Author) / Johnson, Claire E. (Author) / Johnson, Reed M (Author) / Jones, Andrew K. (Author) / Kadowaki, Tatsuhiko (Author) / Kidner, Jonathan H. (Author) / Koch, Vasco (Author) / Kohler, Arian (Author) / Kraus, F. Bernhard (Author) / Lattorff, H. Michael G. (Author) / Leask, Megan (Author) / Lockett, Gabrielle A. (Author) / Mallon, Eamonn B. (Author) / Marco Antonio, David S. (Author) / Marxer, Monika (Author) / Meeus, Ivan (Author) / Moritz, Robin FA (Author) / Nair, Ajay (Author) / Napflin, Kathrin (Author) / Nissen, Inga (Author) / Niu, Jinzhi (Author) / Nunes, Francis MF (Author) / Oakeshott, John G. (Author) / Osborne, Amy (Author) / Otte, Marianne (Author) / Pinheiro, Daniel G. (Author) / Rossie, Nina (Author) / Rueppell, Olav (Author) / Santos, Carolina G (Author) / Schmid-Hempel, Regula (Author) / Schmitt, Bjorn D. (Author) / Schulte, Christina (Author) / Simoes, Zila LP (Author) / Soares, Michelle PM (Author) / Swevers, Luc (Author) / Winnebeck, Eva C. (Author) / Wolschin, Florian (Author) / Yu, Na (Author) / Zdobnov, Evgeny M (Author) / Aqrawi, Peshtewani K (Author) / Blakenburg, Kerstin P (Author) / Coyle, Marcus (Author) / Francisco, Liezl (Author) / Hernandez, Alvaro G. (Author) / Holder, Michael (Author) / Hudson, Matthew E. (Author) / Jackson, LaRonda (Author) / Jayaseelan, Joy (Author) / Joshi, Vandita (Author) / Kovar, Christie (Author) / Lee, Sandra L. (Author) / Mata, Robert (Author) / Mathew, Tittu (Author) / Newsham, Irene F. (Author) / Ngo, Robin (Author) / Okwuonu, Geoffrey (Author) / Pham, Christopher (Author) / Pu, Ling-Ling (Author) / Saada, Nehad (Author) / Santibanez, Jireh (Author) / Simmons, DeNard (Author) / Thornton, Rebecca (Author) / Venkat, Aarti (Author) / Walden, Kimberly KO (Author) / Wu, Yuan-Qing (Author) / Debyser, Griet (Author) / Devreese, Bart (Author) / Asher, Claire (Author) / Blommaert, Julie (Author) / Chipman, Ariel D. (Author) / Chittka, Lars (Author) / Fouks, Bertrand (Author) / Liu, Jisheng (Author) / O'Neill, Meaghan P (Author) / Sumner, Seirian (Author) / Puiu, Daniela (Author) / Qu, Jiaxin (Author) / Salzberg, Steven L (Author) / Scherer, Steven E (Author) / Muzny, Donna M. (Author) / Richards, Stephen (Author) / Robinson, Gene E (Author) / Gibbs, Richard A. (Author) / Schmid-Hempel, Paul (Author) / Worley, Kim C (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-24
128736-Thumbnail Image.png
Description

Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies

Honeybee workers are essentially sterile female helpers that make up the majority of individuals in a colony. Workers display a marked change in physiology when they transition from in-nest tasks to foraging. Recent technological advances have made it possible to unravel the metabolic modifications associated with this transition. Previous studies have revealed extensive remodeling of brain, thorax, and hypopharyngeal gland biochemistry. However, data on changes in the abdomen is scarce. To narrow this gap we investigated the proteomic composition of abdominal tissue in the days typically preceding the onset of foraging in honeybee workers.

In order to get a broader representation of possible protein dynamics, we used workers of two genotypes with differences in the age at which they initiate foraging. This approach was combined with RNA interference-mediated downregulation of an insulin/insulin-like signaling component that is central to foraging behavior, the insulin receptor substrate (irs), and with measurements of glucose and lipid levels.
Our data provide new insight into the molecular underpinnings of phenotypic plasticity in the honeybee, invoke parallels with vertebrate metabolism, and support an integrated and irs-dependent association of carbohydrate and lipid metabolism with the transition from in-nest tasks to foraging.

ContributorsChan, Queenie W. T. (Author) / Mutti, Navdeep (Author) / Foster, Leonard J. (Author) / Kocher, Sarah D. (Author) / Amdam, Gro (Author) / Wolschin, Florian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-09-28
129031-Thumbnail Image.png
Description

Background: Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription

Background: Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data.

Results: We generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation.

Conclusions: This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution.

ContributorsFlores, Kevin (Author) / Wolschin, Florian (Author) / Corneveaux, Jason J. (Author) / Allen, April N. (Author) / Huentelman, Matthew J. (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-09-15
128618-Thumbnail Image.png
Description

Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of

Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae – the gram-positive bacterium causing American foulbrood disease – and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

ContributorsSalmela, Heli (Author) / Amdam, Gro (Author) / Freitak, Dalial (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-31
127858-Thumbnail Image.png
Description

Background: While there is ample evidence for health risks associated with heat and other extreme weather events today, little is known about the impact of weather patterns on population health in preindustrial societies.

Objective: To investigate the impact of weather patterns on population health in Sweden before and during industrialization.

Methods: We

Background: While there is ample evidence for health risks associated with heat and other extreme weather events today, little is known about the impact of weather patterns on population health in preindustrial societies.

Objective: To investigate the impact of weather patterns on population health in Sweden before and during industrialization.

Methods: We obtained records of monthly mortality and of monthly mean temperatures and precipitation for Skellefteå parish, northern Sweden, for the period 1800-1950. The associations between monthly total mortality, as well as monthly mortality due to infectious and cardiovascular diseases, and monthly mean temperature and cumulative precipitation were modelled using a time series approach for three separate periods, 1800−1859, 1860-1909, and 1910-1950.

Results: We found higher temperatures and higher amounts of precipitation to be associated with lower mortality both in the medium term (same month and two-months lag) and in the long run (lag of six months up to a year). Similar patterns were found for mortality due to infectious and cardiovascular diseases. Furthermore, the effect of temperature and precipitation decreased over time.

Conclusions: Higher temperature and precipitation amounts were associated with reduced death counts with a lag of up to 12 months. The decreased effect over time may be due to improvements in nutritional status, decreased infant deaths, and other changes in society that occurred in the course of the demographic and epidemiological transition.

Contribution: The study contributes to a better understanding of the complex relationship between weather and mortality and, in particular, historical weather-related mortality.

ContributorsDaniel, Oudin Astrom (Author) / Edvinsson, Soren (Author) / Hondula, David M. (Author) / Rocklov, Joacim (Author) / Schumann, Barbara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-05
128411-Thumbnail Image.png
Description

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.
Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

Created2015-07-28
128409-Thumbnail Image.png
Description

Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships.
Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag,

Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships.
Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method.
Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series.

Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable.

Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality.

Created2015-12-04
128856-Thumbnail Image.png
Description

Background: Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we

Background: Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life.

Results: Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees.

Conclusion: Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes.

ContributorsMutti, Navdeep (Author) / Wang, Ying (Author) / Kaftanoglu, Osman (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-07-14
128820-Thumbnail Image.png
Description

In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen

In vitro rearing is an important and useful tool for honey bee (Apis mellifera L.) studies. However, it often results in intercastes between queens and workers, which are normally are not seen in hive-reared bees, except when larvae older than three days are grafted for queen rearing. Morphological classification (queen versus worker or intercastes) of bees produced by this method can be subjective and generally depends on size differences. Here, we propose an alternative method for caste classification of female honey bees reared in vitro, based on weight at emergence, ovariole number, spermatheca size and size and shape, and features of the head, mandible and basitarsus. Morphological measurements were made with both traditional morphometric and geometric morphometrics techniques. The classifications were performed by principal component analysis, using naturally developed queens and workers as controls. First, the analysis included all the characters. Subsequently, a new analysis was made without the information about ovariole number and spermatheca size. Geometric morphometrics was less dependent on ovariole number and spermatheca information for caste and intercaste identification. This is useful, since acquiring information concerning these reproductive structures requires time-consuming dissection and they are not accessible when abdomens have been removed for molecular assays or in dried specimens. Additionally, geometric morphometrics divided intercastes into more discrete phenotype subsets. We conclude that morphometric geometrics are superior to traditional morphometrics techniques for identification and classification of honey bee castes and intermediates.

ContributorsDe Souza, Daiana A. (Author) / Wang, Ying (Author) / Kaftanoglu, Osman (Author) / De Jong, David (Author) / Amdam, Gro (Author) / Goncalves, Lionel S. (Author) / Francoy, Tiago M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-20