This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 56
Filtering by

Clear all filters

128618-Thumbnail Image.png
Description

Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of

Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae – the gram-positive bacterium causing American foulbrood disease – and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

ContributorsSalmela, Heli (Author) / Amdam, Gro (Author) / Freitak, Dalial (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-31
128612-Thumbnail Image.png
Description

Health systems are heavily promoting patient portals. However, limited health literacy (HL) can restrict online communication via secure messaging (SM) because patients’ literacy skills must be sufficient to convey and comprehend content while clinicians must encourage and elicit communication from patients and match patients’ literacy level. This paper describes the

Health systems are heavily promoting patient portals. However, limited health literacy (HL) can restrict online communication via secure messaging (SM) because patients’ literacy skills must be sufficient to convey and comprehend content while clinicians must encourage and elicit communication from patients and match patients’ literacy level. This paper describes the Employing Computational Linguistics to Improve Patient-Provider Secure Email (ECLIPPSE) study, an interdisciplinary effort bringing together scientists in communication, computational linguistics, and health services to employ computational linguistic methods to (1) create a novel Linguistic Complexity Profile (LCP) to characterize communications of patients and clinicians and demonstrate its validity and (2) examine whether providers accommodate communication needs of patients with limited HL by tailoring their SM responses. We will study >5 million SMs generated by >150,000 ethnically diverse type 2 diabetes patients and >9000 clinicians from two settings: an integrated delivery system and a public (safety net) system. Finally, we will then create an LCP-based automated aid that delivers real-time feedback to clinicians to reduce the linguistic complexity of their SMs. This research will support health systems’ journeys to become health literate healthcare organizations and reduce HL-related disparities in diabetes care.

ContributorsSchillinger, Dean (Author) / McNamara, Danielle (Author) / Crossley, Scott (Author) / Lyles, Courtney (Author) / Moffet, Howard H. (Author) / Sarkar, Urmimala (Author) / Duran, Nicholas (Author) / Allen, Jill (Author) / Liu, Jennifer (Author) / Oryn, Danielle (Author) / Ratanawongsa, Neda (Author) / Karter, Andrew J. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2017-02-07
128600-Thumbnail Image.png
Description

Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant

Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.

ContributorsPenton, Christopher (Author) / St. Louis, Derek (Author) / Pham, Amanda (Author) / Cole, James R. (Author) / Wu, Liyou (Author) / Luo, Yiqi (Author) / Schuur, E. A. G. (Author) / Zhou, Jizhong (Author) / Tiedje, James M. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2015-07-21
128599-Thumbnail Image.png
Description

MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was

MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin.

Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance.

Created2016-05-31
127897-Thumbnail Image.png
Description

Specification of PM2.5 transmission characteristics is important for pollution control and policymaking. We apply higher-order organization of complex networks to identify major potential PM2.5 contributors and PM2.5 transport pathways of a network of 189 cities in China. The network we create in this paper consists of major cities in China

Specification of PM2.5 transmission characteristics is important for pollution control and policymaking. We apply higher-order organization of complex networks to identify major potential PM2.5 contributors and PM2.5 transport pathways of a network of 189 cities in China. The network we create in this paper consists of major cities in China and contains information on meteorological conditions of wind speed and wind direction, data on geographic distance, mountains, and PM2.5 concentrations. We aim to reveal PM2.5 mobility between cities in China. Two major conclusions are revealed through motif analysis of complex networks. First, major potential PM2.5 pollution contributors are identified for each cluster by one motif, which reflects movements from source to target. Second, transport pathways of PM2.5 are revealed by another motif, which reflects transmission routes. To our knowledge, this is the first work to apply higher-order network analysis to study PM2.5 transport.

ContributorsWang, Yufang (Author) / Wang, Haiyan (Author) / Chang, Shuhua (Author) / Liu, Maoxing (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2017-10-16
127887-Thumbnail Image.png
Description

To investigate dual-process persuasion theories in the context of group decision making, we studied low and high need-for-cognition (NFC) participants within a mock trial study. Participants considered plaintiff and defense expert scientific testimony that varied in argument strength. All participants heard a cross-examination of the experts focusing on peripheral information

To investigate dual-process persuasion theories in the context of group decision making, we studied low and high need-for-cognition (NFC) participants within a mock trial study. Participants considered plaintiff and defense expert scientific testimony that varied in argument strength. All participants heard a cross-examination of the experts focusing on peripheral information (e.g., credentials) about the expert, but half were randomly assigned to also hear central information highlighting flaws in the expert’s message (e.g., quality of the research presented by the expert). Participants rendered pre- and post-group-deliberation verdicts, which were considered “scientifically accurate” if the verdicts reflected the strong (versus weak) expert message, and “scientifically inaccurate” if they reflected the weak (versus strong) expert message. For individual participants, we replicated studies testing classic persuasion theories: Factors promoting reliance on central information (i.e., central cross-examination, high NFC) improved verdict accuracy because they sensitized individual participants to the quality discrepancy between the experts’ messages. Interestingly, however, at the group level, the more that scientifically accurate mock jurors discussed peripheral (versus central) information about the experts, the more likely their group was to reach the scientifically accurate verdict. When participants were arguing for the scientifically accurate verdict consistent with the strong expert message, peripheral comments increased their persuasiveness, which made the group more likely to reach the more scientifically accurate verdict.

Created2017-09-20
128860-Thumbnail Image.png
Description

Aquatic vertebrates that emerge onto land to spawn, feed, or evade aquatic predators must return to the water to avoid dehydration or asphyxiation. How do such aquatic organisms determine their location on land? Do particular behaviors facilitate a safe return to the aquatic realm? In this study, we asked: will

Aquatic vertebrates that emerge onto land to spawn, feed, or evade aquatic predators must return to the water to avoid dehydration or asphyxiation. How do such aquatic organisms determine their location on land? Do particular behaviors facilitate a safe return to the aquatic realm? In this study, we asked: will fully-aquatic mosquitofish (Gambusia affinis) stranded on a slope modulate locomotor behavior according to body position to facilitate movement back into the water? To address this question, mosquitofish (n = 53) were placed in four positions relative to an artificial slope (30° inclination) and their responses to stranding were recorded, categorized, and quantified.

We found that mosquitofish may remain immobile for up to three minutes after being stranded and then initiate either a “roll” or a “leap”. During a roll, mass is destabilized to trigger a downslope tumble; during a leap, the fish jumps up, above the substrate. When mosquitofish are oriented with the long axis of the body at 90° to the slope, they almost always (97%) initiate a roll. A roll is an energetically inexpensive way to move back into the water from a cross-slope body orientation because potential energy is converted back into kinetic energy. When placed with their heads toward the apex of the slope, most mosquitofish (>50%) produce a tail-flip jump to leap into ballistic flight. Because a tail-flip generates a caudually-oriented flight trajectory, this locomotor movement will effectively propel a fish downhill when the head is oriented up-slope. However, because the mass of the body is elevated against gravity, leaps require more mechanical work than rolls. We suggest that mosquitofish use the otolith-vestibular system to sense body position and generate a behavior that is “matched” to their orientation on a slope, thereby increasing the probability of a safe return to the water, relative to the energy expended.

ContributorsBoumis, Robert J. (Author) / Ferry, Lara (Author) / Pace, Cinnamon M. (Author) / Gibb, Alice C. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2014-08-27
128856-Thumbnail Image.png
Description

Background: Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we

Background: Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life.

Results: Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees.

Conclusion: Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes.

ContributorsMutti, Navdeep (Author) / Wang, Ying (Author) / Kaftanoglu, Osman (Author) / Amdam, Gro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-07-14
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01