This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 11
Filtering by

Clear all filters

Description

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-12
129275-Thumbnail Image.png
Description

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.

ContributorsPark, Youngyong (Author) / Do, Younghae (Author) / Altmeyer, Sebastian (Author) / Lai, Ying-Cheng (Author) / Lee, GyuWon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
128506-Thumbnail Image.png
Description

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent,

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent, orographic precipitation adjustment over Mexico and parts of Canada, and reduction of transboundary discontinuities. The impacts of adjusting gridded precipitation for orographic effects are quantified by scaling precipitation to an elevation-aware 1981-2010 precipitation climatology in Mexico and Canada. Differences are evaluated in terms of total precipitation as well as by hydrologic quantities simulated with a land surface model. Overall, orographic correction impacts total precipitation by up to 50% in mountainous regions outside CONUS. Hydrologic fluxes show sensitivities of similar magnitude, with discharge more sensitive than evapotranspiration and soil moisture. Because of the consistent gridding methodology, the current product reduces transboundary discontinuities as compared with a commonly used reanalysis product, making it suitable for estimating large-scale hydrometeorologic phenomena.

ContributorsLivneh, Ben (Author) / Bohn, Theodore (Author) / Pierce, David W. (Author) / Munoz-Arriola, Francisco (Author) / Nijssen, Bart (Author) / Vose, Russell (Author) / Cayan, Daniel R. (Author) / Brekke, Levi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-18
128555-Thumbnail Image.png
Description

We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those

We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author)
Created2017-01-06
128531-Thumbnail Image.png
Description

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-21
128290-Thumbnail Image.png
Description

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land cover-supported, atmospherically-corrected dynamic mixture model applied to 20+ years (1992–2013) of combined, daily, passive/active microwave remote sensing data. The resulting product, known as Surface Water Microwave Product Series (SWAMPS), shows strong microwave sensitivity to sub-grid scale open water and inundated wetlands comprising open plant canopies. SWAMPS’ FW compares favorably (R2 = 91%–94%) with higher-resolution, global-scale maps of open water from MODIS and SRTM-MOD44W. Correspondence of SWAMPS with open water and wetland products from satellite SAR in Alaska and the Amazon deteriorates when exposed wetlands or inundated forests captured by the SAR products were added to the open water fraction reflecting SWAMPS’ inability to detect water underneath the soil surface or beneath closed forest canopies. Except for a brief period of drying during the first 4 years of observation, the inundation extent for the global domain excluding the coast was largely stable. Regionally, inundation in North America is advancing while inundation is on the retreat in Tropical Africa and North Eurasia. SWAMPS provides a consistent and long-term global record of daily FW dynamics, with documented accuracies suitable for hydrologic assessment and global change-related investigations.

ContributorsSchroeder, Ronny (Author) / McDonald, Kyle C. (Author) / Chapman, Bruce D. (Author) / Jensen, Katherine (Author) / Podest, Erika (Author) / Tessler, Zachary D. (Author) / Bohn, Theodore (Author) / Zimmermann, Reiner (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09
128275-Thumbnail Image.png
Description

A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20  cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models,

A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20  cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million  km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.

ContributorsWang, Wenli (Author) / Rinke, Annette (Author) / Moore, John C. (Author) / Ji, Duoying (Author) / Cui, Xuefeng (Author) / Peng, Shushi (Author) / Lawrence, David M. (Author) / McGuire, A. David (Author) / Burke, Eleanor J. (Author) / Chen, Xiaodong (Author) / Decharme, Bertrand (Author) / Koven, Charles (Author) / MacDougall, Andrew (Author) / Saito, Kazuyuki (Author) / Zhang, Wenxin (Author) / Alkama, Ramdane (Author) / Bohn, Theodore (Author) / Ciais, Philippe (Author) / Delire, Christine (Author) / Gouttevin, Isabelle (Author) / Hajima, Tomohiro (Author) / Krinner, Gerhard (Author) / Lettenmaier, Dennis P. (Author) / Miller, Paul A. (Author) / Smith, Benjamin (Author) / Sueyoshi, Tetsuo (Author) / Sherstiukov, Artem B. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-11
128319-Thumbnail Image.png
Description

A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP)

A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data.

The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m-2 yr-2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength.

The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation productivity and soil respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These advances will require collection of new field data on vegetation and soil dynamics, the development of benchmarking data sets from measurements and remote-sensing observations, and investments in future model development and intercomparison studies.

ContributorsRawlins, M. A. (Author) / McGuire, A. D. (Author) / Kimball, J. S. (Author) / Dass, P. (Author) / Lawrence, D. (Author) / Burke, E. (Author) / Chen, X. (Author) / Delire, C. (Author) / Koven, C. (Author) / MacDougall, A. (Author) / Peng, S. (Author) / Rinke, A. (Author) / Saito, K. (Author) / Zhang, W. (Author) / Alkama, R. (Author) / Bohn, Theodore (Author) / Ciais, P. (Author) / Decharme, B. (Author) / Gouttevin, I. (Author) / Hajima, T. (Author) / Ji, D. (Author) / Krinner, G. (Author) / Lettenmaier, D. P. (Author) / Miller, P. (Author) / Moore, J. C. (Author) / Smith, B. (Author) / Sueyoshi, T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-28
128149-Thumbnail Image.png
Description

Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced

Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr-1), inversions (6.06 ± 1.22 Tg CH4 yr-1), and in situ observations (3.91 ± 1.29 Tg CH4 yr-1) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature), unlike those of inversions and more sophisticated forward models; (d) differences in biogeochemical schemes across models had relatively smaller influence over performance; and (e) multiyear or multidecade observational records are crucial for evaluating models' responses to long-term climate change.

ContributorsBohn, Theodore (Author) / Melton, J. R. (Author) / Ito, A. (Author) / Kleinen, T. (Author) / Spahni, R. (Author) / Stocker, B. D. (Author) / Zhang, B. (Author) / Zhu, X. (Author) / Schroeder, R. (Author) / Glagolev, M. V. (Author) / Maksyutov, S. (Author) / Brovkin, V. (Author) / Chen, G. (Author) / Denisov, S. N. (Author) / Eliseev, A. V. (Author) / Gallego-Sala, A. (Author) / McDonald, K. C. (Author) / Rawlins, M. A. (Author) / Riley, W. J. (Author) / Subin, Z. M. (Author) / Tian, H. (Author) / Zhuang, Q. (Author) / Kaplan, J. O. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-03
128234-Thumbnail Image.png
Description

Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH4) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH4 emissions using an enhanced version of the Variable

Climate factors including soil temperature and moisture, incident solar radiation, and atmospheric carbon dioxide concentration are important environmental controls on methane (CH4) emissions from northern wetlands. We investigated the spatiotemporal distributions of the influence of these factors on northern high-latitude wetland CH4 emissions using an enhanced version of the Variable Infiltration Capacity (VIC) land surface model. We simulated CH4 emissions from wetlands across the pan-Arctic domain over the period 1948–2006, yielding annual average emissions of 36.1 ± 6.7 Tg CH4 yr-1 for the period 1997–2006. We characterized historical sensitivities of CH4 emissions to air temperature, precipitation, incident long- and shortwave radiation, and atmospheric [CO2] as a function of average summer air temperature and precipitation. Emissions from relatively warm and dry wetlands in the southern (permafrost-free) portion of the domain were positively correlated with precipitation and negatively correlated with air temperature, while emissions from wetter and colder wetlands further north (permafrost) were positively correlated with air temperature. Over the entire period 1948–2006, our reconstructed CH4 emissions increased by 20 %, the majority of which can be attributed to an increasing trend in summer air temperature. We estimated future emissions in response to 21st century warming as predicted by CMIP5 (Coupled Model Intercomparison Project Phase 5) model projections to result in end-of-century CH4 emissions 38–53 % higher than our reconstructed 1997–2006 emissions, accompanied by the northward migration of warmer and drier than optimal conditions for CH4 emissions, implying a reduced role for temperature in driving future increases in emissions.

ContributorsChen, X. (Author) / Bohn, Theodore (Author) / Lettenmaier, D. P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-11-02