This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 26 of 26
Filtering by

Clear all filters

128369-Thumbnail Image.png
Description

From cells to societies, several general principles arise again and again that facilitate cooperation and suppress conflict. In this study, I describe three general principles of cooperation and how they operate across systems including human sharing, cooperation in animal and insect societies and the massively large-scale cooperation that occurs in

From cells to societies, several general principles arise again and again that facilitate cooperation and suppress conflict. In this study, I describe three general principles of cooperation and how they operate across systems including human sharing, cooperation in animal and insect societies and the massively large-scale cooperation that occurs in our multicellular bodies. The first principle is that of Walk Away: that cooperation is enhanced when individuals can leave uncooperative partners. The second principle is that resource sharing is often based on the need of the recipient (i.e., need-based transfers) rather than on strict account-keeping. And the last principle is that effective scaling up of cooperation requires increasingly sophisticated and costly cheater suppression mechanisms. By comparing how these principles operate across systems, we can better understand the constraints on cooperation. This can facilitate the discovery of novel ways to enhance cooperation and suppress cheating in its many forms, from social exploitation to cancer.

ContributorsAktipis, C. Athena (Author) / Department of Psychology (Contributor)
Created2015-10-17
128336-Thumbnail Image.png
Description

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.

ContributorsBarrila, Jennifer (Author) / Yang, Jiseon (Author) / Crabbe, Aurelie (Author) / Sarker, Shameema (Author) / Liu, Yulong (Author) / Ott, C. Mark (Author) / Nelman-Gonzalez, Mayra A. (Author) / Clemett, Simon J. (Author) / Nydam, Seth (Author) / Forsyth, Rebecca (Author) / Davis, Richard (Author) / Crucian, Brian E. (Author) / Quiriarte, Heather (Author) / Roland, Kenneth (Author) / Brenneman, Karen (Author) / Sams, Clarence (Author) / Loscher, Christine (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2017-02-28
128159-Thumbnail Image.png
Description

Though many animal ornaments and signals are sensitive to and encode information about the oxidative balance (OB) of individuals (e.g., antioxidant supplies/activity, reactive oxygen species, cellular oxidative damage/repair), often the environmental and/or physiological sources of such OB are unknown. Urban development is among the most recent, pervasive, and persistent human

Though many animal ornaments and signals are sensitive to and encode information about the oxidative balance (OB) of individuals (e.g., antioxidant supplies/activity, reactive oxygen species, cellular oxidative damage/repair), often the environmental and/or physiological sources of such OB are unknown. Urban development is among the most recent, pervasive, and persistent human stressors on the planet and impacts many environmental and physiological parameters of animals. Here we review the mechanistic underpinnings and functional consequences of how human urbanization drives antioxidant/oxidative status in animals and how this affects signal expression and use. Although we find that urbanization has strong negative effects on signal quality (e.g., visual, auditory, chemical) and OB across a range of taxa, few urban ecophysiological studies address signals and oxidative stress in unison, and even fewer in a fitness context. We also highlight particular signal types, taxa, life-histories, and anthropogenic environmental modifications on which future work integrating OB, signals, and urbanization could be centered. Last, we examine the conceptual and empirical framework behind the idea that urban conditions may disentangle signal expression from honesty and affect plasticity and adaptedness of sexually selected traits and preferences in the city.

ContributorsHutton, Pierce (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-19
128123-Thumbnail Image.png
Description

Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a

Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1, HSP27, GPX1, XRCC1, BAG-1, HHR23A, FAP48, and C-FOS. No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

ContributorsBarrila, Jennifer (Author) / Ott, C. Mark (Author) / LeBlanc, Carly (Author) / Mehta, Satish K. (Author) / Crabbe, Aurelie (Author) / Stafford, Phillip (Author) / Pierson, Duane L. (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-12-08
129438-Thumbnail Image.png
Description

Microbes in the gastrointestinal tract are under selective pressure to manipulate host eating behavior to increase their fitness, sometimes at the expense of host fitness. Microbes may do this through two potential strategies: (i) generating cravings for foods that they specialize on or foods that suppress their competitors, or (ii)

Microbes in the gastrointestinal tract are under selective pressure to manipulate host eating behavior to increase their fitness, sometimes at the expense of host fitness. Microbes may do this through two potential strategies: (i) generating cravings for foods that they specialize on or foods that suppress their competitors, or (ii) inducing dysphoria until we eat foods that enhance their fitness. We review several potential mechanisms for microbial control over eating behavior including microbial influence on reward and satiety pathways, production of toxins that alter mood, changes to receptors including taste receptors, and hijacking of the vagus nerve, the neural axis between the gut and the brain. We also review the evidence for alternative explanations for cravings and unhealthy eating behavior. Because microbiota are easily manipulatable by prebiotics, probiotics, antibiotics, fecal transplants, and dietary changes, altering our microbiota offers a tractable approach to otherwise intractable problems of obesity and unhealthy eating.

ContributorsAlcock, Joe (Author) / Maley, Carlo C. (Author) / Aktipis, C. Athena (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-10-01
129206-Thumbnail Image.png
Description

Vertebrates cannot synthesize carotenoid pigments de novo, so to produce carotenoid-based coloration they must ingest carotenoids. Most songbirds that deposit red carotenoids in feathers, bills, eyes, or skin ingest only yellow or orange dietary pigments, which they oxidize to red pigments via a ketolation reaction. It has been hypothesized that

Vertebrates cannot synthesize carotenoid pigments de novo, so to produce carotenoid-based coloration they must ingest carotenoids. Most songbirds that deposit red carotenoids in feathers, bills, eyes, or skin ingest only yellow or orange dietary pigments, which they oxidize to red pigments via a ketolation reaction. It has been hypothesized that carotenoid ketolation occurs in the liver of vertebrates, but this hypothesis remains to be confirmed. To better understand the role of hepatocytes in the production of ketolated carotenoids in songbirds, we measured the carotenoid content of subcellular components of hepatocytes from wild male house finches (Haemorhous mexicanus) that were molting red, ketocarotenoid-containing feathers (e.g., 3-hydroxy-echinenone). We homogenized freshly collected livers of house finches and isolated subcellular fractions, including mitochondria. We found the highest concentration of ketocarotenoids in the mitochondrial fraction. These observations are consistent with the hypothesis that carotenoid pigments are oxidized on or within hepatic mitochondria, esterified, and then transported to the Golgi apparatus for secretory processing.

ContributorsGe, Zhiyuan (Author) / Johnson, James D. (Author) / Cobine, Paul A. (Author) / McGraw, Kevin (Author) / Garcia, Rosana (Author) / Hill, Geoffrey E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-01