This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

128616-Thumbnail Image.png
Description

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants (17 men, 3 women, aged 35–65) continuously for 64.4±26.2 (range: 13.9 to 102.0) consecutive days. Cardiometabolic risk biomarkers and health-related quality of life metrics were assessed at baseline. Periodograms were constructed to determine patterns emergent from the accelerometer data. Periodicity strength was calculated using circular autocorrelations for time-lagged windows. The most notable periodicity was at 24 h, indicating a circadian rest-activity cycle; however, its strength varied significantly across participants. Periodicity strength was most consistently associated with LDL-cholesterol (r’s = 0.40–0.79, P’s < 0.05) and triglycerides (r’s = 0.68–0.86, P’s < 0.05) but also associated with hs-CRP and health-related quality of life, even after adjusting for demographics and self-rated physical activity and insomnia symptoms. Our framework demonstrates a new method for characterizing behavior patterns longitudinally which captures relationships between 24 h accelerometry data and health outcomes.

ContributorsBuman, Matthew (Author) / Hu, Feiyan (Author) / Newman, Eamonn (Author) / Smeaton, Alan F. (Author) / Epstein, Dana R. (Author) / College of Health Solutions (Contributor)
Created2016-01-04
128596-Thumbnail Image.png
Description

Background: Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older adults; however, the availability of sustainable, community-based FPPs is limited.

Methods: We conducted a 24-week quasi-experimental study to evaluate the efficacy

Background: Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older adults; however, the availability of sustainable, community-based FPPs is limited.

Methods: We conducted a 24-week quasi-experimental study to evaluate the efficacy of a community-based, multifactorial FPP [Stay in Balance (SIB)] on dynamic and functional balance and muscular strength. The SIB program was delivered by allied health students and included a health education program focused on fall risk factors and a progressive exercise program emphasizing lower-extremity strength and balance. All participants initially received the 12-week SIB program, and participants were non-randomly assigned at baseline to either continue the SIB exercise program at home or as a center-based program for an additional 12 weeks. Adults aged 60 and older (n = 69) who were at-risk of falling (fall history or 2+ fall risk factors) were recruited to participate. Mixed effects repeated measures using Statistical Application Software Proc Mixed were used to examine group, time, and group-by-time effects on dynamic balance (8-Foot Up and Go), functional balance (Berg Balance Scale), and muscular strength (30 s chair stands and 30 s arm curls). Non-normally distributed outcome variables were log-transformed.

Results: After adjusting for age, gender, and body mass index, 8-Foot Up and Go scores, improved significantly over time [F(2,173) = 8.92, p = 0.0; T0 − T2 diff = 1.2 (1.0)]. Berg Balance Scores [F(2,173) = 29.0, p < 0.0001; T0 − T2 diff = 4.96 (0.72)], chair stands [F(2,171) = 10.17, p < 0.0001; T0 − T2 diff = 3.1 (0.7)], and arm curls [F(2,171) = 12.7, p < 0.02; T0 − T2 diff = 2.7 (0.6)] also all improved significantly over time. There were no significant group-by-time effects observed for any of the outcomes.

Conclusion: The SIB program improved dynamic and functional balance and muscular strength in older adults at-risk for falling. Our findings indicate continuing home-based strength and balance exercises at home after completion of a center-based FPP program may be an effective and feasible way to maintain improvements in balance and strength parameters.

ContributorsDer Ananian, Cheryl (Author) / Mitros, Melanie (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor)
Created2017-02-27
127882-Thumbnail Image.png
Description

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results.

The estimation of energy demand (by power plants) has traditionally relied on historical energy use data for the region(s) that a plant produces for. Regression analysis, artificial neural network and Bayesian theory are the most common approaches for analysing these data. Such data and techniques do not generate reliable results. Consequently, excess energy has to be generated to prevent blackout; causes for energy surge are not easily determined; and potential energy use reduction from energy efficiency solutions is usually not translated into actual energy use reduction. The paper highlights the weaknesses of traditional techniques, and lays out a framework to improve the prediction of energy demand by combining energy use models of equipment, physical systems and buildings, with the proposed data mining algorithms for reverse engineering. The research team first analyses data samples from large complex energy data, and then, presents a set of computationally efficient data mining algorithms for reverse engineering. In order to develop a structural system model for reverse engineering, two focus groups are developed that has direct relation with cause and effect variables. The research findings of this paper includes testing out different sets of reverse engineering algorithms, understand their output patterns and modify algorithms to elevate accuracy of the outputs.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Ye, Long (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-12-09
127878-Thumbnail Image.png
Description

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach

Small and medium office buildings consume a significant parcel of the U.S. building stock energy consumption. Still, owners lack resources and experience to conduct detailed energy audits and retrofit analysis. We present an eight-steps framework for an energy retrofit assessment in small and medium office buildings. Through a bottom-up approach and a web-based retrofit toolkit tested on a case study in Arizona, this methodology was able to save about 50% of the total energy consumed by the case study building, depending on the adopted measures and invested capital. While the case study presented is a deep energy retrofit, the proposed framework is effective in guiding the decision-making process that precedes any energy retrofit, deep or light.

ContributorsRios, Fernanda (Author) / Parrish, Kristen (Author) / Chong, Oswald (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127865-Thumbnail Image.png
Description

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external and internal factors. Modern large scale sensor measures some physical signals to monitor real-time system behaviors. Such data has the potentials to detect anomalies, identify consumption patterns, and analyze peak loads. The paper proposes a novel method to detect hidden anomalies in commercial building energy consumption system. The framework is based on Hilbert-Huang transform and instantaneous frequency analysis. The objectives are to develop an automated data pre-processing system that can detect anomalies and provide solutions with real-time consumption database using Ensemble Empirical Mode Decomposition (EEMD) method. The finding of this paper will also include the comparisons of Empirical mode decomposition and Ensemble empirical mode decomposition of three important type of institutional buildings.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Huang, Zigang (Author) / Cheng, Ying (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127833-Thumbnail Image.png
Description

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to address the increasing complexity. Using data from the energy loss

There are many data mining and machine learning techniques to manage large sets of complex energy supply and demand data for building, organization and city. As the amount of data continues to grow, new data analysis methods are needed to address the increasing complexity. Using data from the energy loss between the supply (energy production sources) and demand (buildings and cities consumption), this paper proposes a Semi-Supervised Energy Model (SSEM) to analyse different loss factors for a building cluster. This is done by deep machine learning by training machines to semi-supervise the learning, understanding and manage the process of energy losses. Semi-Supervised Energy Model (SSEM) aims at understanding the demand-supply characteristics of a building cluster and utilizes the confident unlabelled data (loss factors) using deep machine learning techniques. The research findings involves sample data from one of the university campuses and presents the output, which provides an estimate of losses that can be reduced. The paper also provides a list of loss factors that contributes to the total losses and suggests a threshold value for each loss factor, which is determined through real time experiments. The conclusion of this paper provides a proposed energy model that can provide accurate numbers on energy demand, which in turn helps the suppliers to adopt such a model to optimize their supply strategies.

ContributorsNaganathan, Hariharan (Author) / Chong, Oswald (Author) / Chen, Xue-wen (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-09-14
129067-Thumbnail Image.png
Description

Background: Little research has explored who responds better to an automated vs. human advisor for health behaviors in general, and for physical activity (PA) promotion in particular. The purpose of this study was to explore baseline factors (i.e., demographics, motivation, interpersonal style, and external resources) that moderate intervention efficacy delivered by

Background: Little research has explored who responds better to an automated vs. human advisor for health behaviors in general, and for physical activity (PA) promotion in particular. The purpose of this study was to explore baseline factors (i.e., demographics, motivation, interpersonal style, and external resources) that moderate intervention efficacy delivered by either a human or automated advisor.

Methods: Data were from the CHAT Trial, a 12-month randomized controlled trial to increase PA among underactive older adults (full trial N = 218) via a human advisor or automated interactive voice response advisor. Trial results indicated significant increases in PA in both interventions by 12 months that were maintained at 18-months. Regression was used to explore moderation of the two interventions.

Results: Results indicated amotivation (i.e., lack of intent in PA) moderated 12-month PA (d = 0.55, p < 0.01) and private self-consciousness (i.e., tendency to attune to one’s own inner thoughts and emotions) moderated 18-month PA (d = 0.34, p < 0.05) but a variety of other factors (e.g., demographics) did not (p > 0.12).

Conclusions: Results provide preliminary evidence for generating hypotheses about pathways for supporting later clinical decision-making with regard to the use of either human- vs. computer-delivered interventions for PA promotion.

ContributorsHekler, Eric (Author) / Buman, Matthew (Author) / Otten, Jennifer (Author) / Castro, Cynthia (Author) / Grieco, Lauren (Author) / Marcus, Bess (Author) / Friedman, Robert H. (Author) / Napolitano, Melissa A. (Author) / King, Abby C. (Author) / College of Health Solutions (Contributor)
Created2013-09-22
129061-Thumbnail Image.png
Description

Introduction: Abundance of immune cells has been shown to have prognostic and predictive significance in many tumor types. Beyond abundance, the spatial organization of immune cells in relation to cancer cells may also have significant functional and clinical implications. However there is a lack of systematic methods to quantify spatial associations

Introduction: Abundance of immune cells has been shown to have prognostic and predictive significance in many tumor types. Beyond abundance, the spatial organization of immune cells in relation to cancer cells may also have significant functional and clinical implications. However there is a lack of systematic methods to quantify spatial associations between immune and cancer cells.

Methods: We applied ecological measures of species interactions to digital pathology images for investigating the spatial associations of immune and cancer cells in breast cancer. We used the Morisita-Horn similarity index, an ecological measure of community structure and predator–prey interactions, to quantify the extent to which cancer cells and immune cells colocalize in whole-tumor histology sections. We related this index to disease-specific survival of 486 women with breast cancer and validated our findings in a set of 516 patients from different hospitals.

Results: Colocalization of immune cells with cancer cells was significantly associated with a disease-specific survival benefit for all breast cancers combined. In HER2-positive subtypes, the prognostic value of immune-cancer cell colocalization was highly significant and exceeded those of known clinical variables. Furthermore, colocalization was a significant predictive factor for long-term outcome following chemotherapy and radiotherapy in HER2 and Luminal A subtypes, independent of and stronger than all known clinical variables.

Conclusions: Our study demonstrates how ecological methods applied to the tumor microenvironment using routine histology can provide reproducible, quantitative biomarkers for identifying high-risk breast cancer patients. We found that the clinical value of immune-cancer interaction patterns is highly subtype-specific but substantial and independent to known clinicopathologic variables that mostly focused on cancer itself. Our approach can be developed into computer-assisted prediction based on histology samples that are already routinely collected.

ContributorsMaley, Carlo (Author) / Koelble, Konrad (Author) / Natrajan, Rachael (Author) / Aktipis, C. Athena (Author) / Yuan, Yinyin (Author) / Biodesign Institute (Contributor)
Created2015-09-22
128468-Thumbnail Image.png
Description

In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER−) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER− breast cancer risk with fast life history characteristics that Hidaka and Boddy

In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER−) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER− breast cancer risk with fast life history characteristics that Hidaka and Boddy suggest in their response to our article. There are a number of possible explanations for the differences between their conclusions and the conclusions we drew from our meta-analysis, including limitations of our meta-analysis and methodological challenges in measuring and categorizing estrogen receptor status. These challenges, along with the association of ER+ breast cancer with slow life history characteristics, may make it challenging to find a clear signal of ER− breast cancer with fast life history characteristics, even if that relationship does exist. The contradictory results regarding breast cancer risk and life history characteristics illustrate a more general challenge in evolutionary medicine: often different sub-theories in evolutionary biology make contradictory predictions about disease risk. In this case, life history models predict that breast cancer risk should increase with faster life history characteristics, while the evolutionary mismatch hypothesis predicts that breast cancer risk should increase with delayed reproduction. Whether life history tradeoffs contribute to ER− breast cancer is still an open question, but current models and several lines of evidence suggest that it is a possibility.

ContributorsAktipis, C. Athena (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-21
128466-Thumbnail Image.png
Description

It has long been accepted that modern reproductive patterns are likely contributors to breast cancer susceptibility because of their influence on hormones such as estrogen and the importance of these hormones in breast cancer. We conducted a meta-analysis to assess whether this ‘evolutionary mismatch hypothesis’ can explain susceptibility to both

It has long been accepted that modern reproductive patterns are likely contributors to breast cancer susceptibility because of their influence on hormones such as estrogen and the importance of these hormones in breast cancer. We conducted a meta-analysis to assess whether this ‘evolutionary mismatch hypothesis’ can explain susceptibility to both estrogen receptor positive (ER-positive) and estrogen receptor negative (ER-negative) cancer. Our meta-analysis includes a total of 33 studies and examines parity, age of first birth and age of menarche broken down by estrogen receptor status. We found that modern reproductive patterns are more closely linked to ER-positive than ER-negative breast cancer. Thus, the evolutionary mismatch hypothesis for breast cancer can account for ER-positive breast cancer susceptibility but not ER-negative breast cancer.

ContributorsAktipis, C. Athena (Author) / Ellis, Bruce J. (Author) / Nishimura, Katherine K. (Author) / Hiatt, Robert A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-11