This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
128513-Thumbnail Image.png
Description

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be −7.9, −5.51, −6.11, and −3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

ContributorsDybala, F. (Author) / Polak, M. P. (Author) / Kopaczek, J. (Author) / Scharoch, P. (Author) / Wu, Kedi (Author) / Tongay, Sefaattin (Author) / Kudrawiec, R. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
128505-Thumbnail Image.png
Description

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the

Binary transition metal dichalcogenide monolayers share common properties such as a direct optical bandgap, spin-orbit splittings of hundreds of meV, light–matter interaction dominated by robust excitons and coupled spin-valley states. Here we demonstrate spin-orbit-engineering in Mo[(1-x)]WxSe2 alloy monolayers for optoelectronics and applications based on spin- and valley-control. We probe the impact of the tuning of the conduction band spin-orbit spin-splitting on the bright versus dark exciton population. For MoSe2 monolayers, the photoluminescence intensity decreases as a function of temperature by an order of magnitude (4–300 K), whereas for WSe2 we measure surprisingly an order of magnitude increase. The ternary material shows a trend between these two extreme behaviors. We also show a non-linear increase of the valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2.

ContributorsWang, Gang (Author) / Robert, Cedric (Author) / Tuna, Aslihan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Alamdari, Sarah (Author) / Gerber, Iann C. (Author) / Amand, Thierry (Author) / Marie, Xavier (Author) / Tongay, Sefaattin (Author) / Urbaszek, Bernhard (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-14
128492-Thumbnail Image.png
Description

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice

We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.

ContributorsTuna, Aslihan (Author) / Wu, Kedi (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Yang, Sijie (Author) / Cai, Hui (Author) / Aoki, Toshihiro (Author) / Horzum, Seyda (Author) / Kang, Jun (Author) / Peeters, Francois M. (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-05
128491-Thumbnail Image.png
Description

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of

Transition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S–S molecular oscillations. High-pressure Raman studies further reveal that the AgS-S S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems.

ContributorsWu, Kedi (Author) / Torun, Engin (Author) / Sahin, Hasan (Author) / Chen, Bin (Author) / Fan, Xi (Author) / Pant, Anupum (Author) / Wright, David (Author) / Aoki, Toshihiro (Author) / Peeters, Francois M. (Author) / Soignard, Emmanuel (Author) / Tongay, Sefaattin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-09-22
128571-Thumbnail Image.png
Description

Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of

Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.

ContributorsLee, Sangwook (Author) / Yang, Fan (Author) / Suh, Joonki (Author) / Yang, Sijie (Author) / Lee, Yeonbae (Author) / Li, Guo (Author) / Choe, Hwan Sung (Author) / Tuna, Aslihan (Author) / Chen, Yabin (Author) / Ko, Changhyun (Author) / Park, Joonsuk (Author) / Liu, Kai (Author) / Li, Jingbo (Author) / Hippalgaonkar, Kedar (Author) / Urban, Jeffrey J. (Author) / Tongay, Sefaattin (Author) / Wu, Junqiao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-10-16
129072-Thumbnail Image.png
Description

Background: Many studies used the older ActiGraph (7164) for physical activity measurement, but this model has been replaced with newer ones (e.g., GT3X+). The assumption that new generation models are more accurate has been questioned, especially for measuring lower intensity levels. The low-frequency extension (LFE) increases the low-intensity sensitivity of newer

Background: Many studies used the older ActiGraph (7164) for physical activity measurement, but this model has been replaced with newer ones (e.g., GT3X+). The assumption that new generation models are more accurate has been questioned, especially for measuring lower intensity levels. The low-frequency extension (LFE) increases the low-intensity sensitivity of newer models, but its comparability with older models is unknown. This study compared step counts and physical activity collected with the 7164 and GT3X + using the Normal Filter and the LFE (GT3X+N and GT3X+LFE, respectively).

Findings: Twenty-five adults wore 2 accelerometer models simultaneously for 3Âdays and were instructed to engage in typical behaviors. Average daily step counts and minutes per day in nonwear, sedentary, light, moderate, and vigorous activity were calculated. Repeated measures ANOVAs with post-hoc pairwise comparisons were used to compare mean values. Means for the GT3X+N and 7164 were significantly different in 4 of the 6 categories (p < .05). The GT3X+N showed 2041 fewer steps per day and more sedentary, less light, and less moderate than the 7164 (+25.6, -31.2, -2.9 mins/day, respectively). The GT3X+LFE showed non-significant differences in 5 of 6 categories but recorded significantly more steps (+3597 steps/day; p < .001) than the 7164.

Conclusion: Studies using the newer ActiGraphs should employ the LFE for greater sensitivity to lower intensity activity and more comparable activity results with studies using the older models. Newer generation ActiGraphs do not produce comparable step counts to the older generation devices with the Normal filter or the LFE.

ContributorsCain, Kelli L. (Author) / Conway, Terry L. (Author) / Adams, Marc (Author) / Husak, Lisa E. (Author) / Sallis, James F. (Author) / College of Health Solutions (Contributor)
Created2013-04-25
129016-Thumbnail Image.png
Description

Background: Advancements in geographic information systems over the past two decades have increased the specificity by which an individual’s neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built

Background: Advancements in geographic information systems over the past two decades have increased the specificity by which an individual’s neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built environment measures (BEMs) and tested their performance on associations with physical activity outcomes.

Methods: An internationally-developed set of objective BEMs using three different spatial buffering techniques were used to evaluate the relative differences in resulting explanatory power on self-reported physical activity outcomes. BEMs were developed in five countries using ‘sausage,’ ‘detailed-trimmed,’ and ‘detailed,’ network buffers at a distance of 1 km around participant household addresses (n = 5883).

Results: BEM values were significantly different (p < 0.05) for 96% of sausage versus detailed-trimmed buffer comparisons and 89% of sausage versus detailed network buffer comparisons. Results showed that BEM coefficients in physical activity models did not differ significantly across buffering methods, and in most cases BEM associations with physical activity outcomes had the same level of statistical significance across buffer types. However, BEM coefficients differed in significance for 9% of the sausage versus detailed models, which may warrant further investigation.

Conclusions: Results of this study inform the selection of spatial buffering methods to estimate physical activity outcomes using an internationally consistent set of BEMs. Using three different network-based buffering methods, the findings indicate significant variation among BEM values, however associations with physical activity outcomes were similar across each buffering technique. The study advances knowledge by presenting consistently assessed relationships between three different network buffer types and utilitarian travel, sedentary behavior, and leisure-oriented physical activity outcomes.

ContributorsFrank, Lawrence D. (Author) / Fox, Eric H. (Author) / Ulmer, Jared M. (Author) / Chapman, James E. (Author) / Kershaw, Suzanne E. (Author) / Sallis, James F. (Author) / Conway, Terry L. (Author) / Cerin, Ester (Author) / Cain, Kelli L. (Author) / Adams, Marc (Author) / Smith, Graham R. (Author) / Hinckson, Erica (Author) / Mavoa, Suzanne (Author) / Christiansen, Lars B. (Author) / Hino, Adriano Akira F. (Author) / Lopes, Adalberto A. S. (Author) / Schipperijn, Jasper (Author) / College of Health Solutions (Contributor)
Created2017-01-23
129015-Thumbnail Image.png
Description

Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This

Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This paper documents variation in comparable built environment features across countries from diverse regions.

Methods: The International Physical Activity and the Environment Network (IPEN) study of adults aimed to measure the full range of variation in the built environment using geographic information systems (GIS) across 12 countries on 5 continents. Investigators in Australia, Belgium, Brazil, Colombia, the Czech Republic, Denmark, China, Mexico, New Zealand, Spain, the United Kingdom, and the United States followed a common research protocol to develop internationally comparable measures. Using detailed instructions, GIS-based measures included features such as walkability (i.e., residential density, street connectivity, mix of land uses), and access to public transit, parks, and private recreation facilities around each participant’s residential address using 1-km and 500-m street network buffers.

Results: Eleven of 12 countries and 15 cities had objective GIS data on built environment features. We observed a 38-fold difference in median residential densities, a 5-fold difference in median intersection densities and an 18-fold difference in median park densities. Hong Kong had the highest and North Shore, New Zealand had the lowest median walkability index values, representing a difference of 9 standard deviations in GIS-measured walkability.

Conclusions: Results show that comparable measures can be created across a range of cultural settings revealing profound global differences in urban form relevant to physical activity. These measures allow cities to be ranked more precisely than previously possible. The highly variable measures of urban form will be used to explain individuals’ physical activity, sedentary behaviors, body mass index, and other health outcomes on an international basis. Present measures provide the ability to estimate dose–response relationships from projected changes to the built environment that would otherwise be impossible.

ContributorsAdams, Marc (Author) / Frank, Lawrence D. (Author) / Schipperijn, Jasper (Author) / Smith, Graham (Author) / Chapman, James (Author) / Christiansen, Lars B. (Author) / Coffee, Neil (Author) / Salvo, Deborah (Author) / du Toit, Lorinne (Author) / Dygryn, Jan (Author) / Hino, Adriano Akira Ferreira (Author) / Lai, Poh-chin (Author) / Mavoa, Suzanne (Author) / Pinzon, Jose David (Author) / Van de Weghe, Nico (Author) / Cerin, Ester (Author) / Davey, Rachel (Author) / Macfarlane, Duncan (Author) / Owen, Neville (Author) / Sallis, James F. (Author) / College of Health Solutions (Contributor)
Created2014-10-25
128636-Thumbnail Image.png
Description

Background: To more accurately quantify the potential impact of the neighbourhood environment on adults’ physical activity (PA), it is important to compare environment-PA associations between periods of the day or week when adults are more versus less likely to be in their neighbourhood and utilise its PA resources. We examined

Background: To more accurately quantify the potential impact of the neighbourhood environment on adults’ physical activity (PA), it is important to compare environment-PA associations between periods of the day or week when adults are more versus less likely to be in their neighbourhood and utilise its PA resources. We examined whether, among adults from 10 countries, associations between objectively-assessed neighbourhood environment attributes and moderate-to-vigorous physical activity (MVPA) varied by time of the day and day of the week. The secondary aim was to examine whether such associations varied by employment status, gender and city.

Methods: This cross-sectional study included 6,712 adults from 14 cities across 10 countries with ≥1 day of valid accelerometer-assessed MVPA and complete information on socio-demographic and objectively-assessed environmental characteristics within 0.5 and 1 km street-network buffers around the home. Accelerometer measures (MVPA min/h) were created for six time periods from early morning until late evening/night, for weekdays and weekend days separately. Associations were estimated using generalized additive mixed models.

Results: Time of the day, day of week, gender and employment status were significant moderators of environment-MVPA associations. Land use mix was positively associated with MVPA in women who were employed and in men irrespective of their employment status. The positive associations between MVPA and net residential density, intersection density and land use mix were stronger in the mornings of weekdays and the afternoon/evening periods of both weekdays and weekend days. Associations between number of parks and MVPA were stronger in the mornings and afternoon/evenings irrespective of day of the week. Public transport density showed consistent positive associations with MVPA during weekends, while stronger effects on weekdays were observed in the morning and early evenings.

Conclusions: This study suggests that space and time constraints in adults’ daily activities are important factors that determine the impact of neighbourhood attributes on PA. Consideration of time-specific associations is important to better characterise the magnitude of the effects of the neighbourhood environment on PA. Future research will need to examine the contribution of built environment characteristics of areas surrounding other types of daily life centres (e.g., workplaces) to explaining adults’ PA at specific times of the day.

ContributorsCerin, Ester (Author) / Mitas, Josef (Author) / Cain, Kelli L. (Author) / Conway, Terry L. (Author) / Adams, Marc (Author) / Schofield, Grant (Author) / Sarmiento, Olga L. (Author) / Siqueira Reis, Rodrigo (Author) / Schipperijn, Jasper (Author) / Davey, Rachel (Author) / Salvo, Deborah (Author) / Orzanco-Garralda, Rosario (Author) / Macfarlane, Duncan J. (Author) / De Bourdeaudhuij, Ilse (Author) / Owen, Neville (Author) / Sallis, James F. (Author) / Van Dyck, Delfien (Author) / College of Health Solutions (Contributor)
Created2017-03-20