This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 92
Filtering by

Clear all filters

129343-Thumbnail Image.png
Description

Telomerase RNA (TER) is an essential component of the telomerase ribonucleoprotein complex. The mechanism for TER 3′-end processing is highly divergent among different organisms. Here we report a unique spliceosome-mediated TER 3′-end cleavage mechanism in Neurospora crassa that is distinct from that found specifically in the fission yeast Schizosaccharomyces pombe.

Telomerase RNA (TER) is an essential component of the telomerase ribonucleoprotein complex. The mechanism for TER 3′-end processing is highly divergent among different organisms. Here we report a unique spliceosome-mediated TER 3′-end cleavage mechanism in Neurospora crassa that is distinct from that found specifically in the fission yeast Schizosaccharomyces pombe. While the S. pombe TER intron contains the canonical 5′-splice site GUAUGU, the N. crassa TER intron contains a non-canonical 5′-splice site AUAAGU that alone prevents the second step of splicing and promotes spliceosomal cleavage. The unique N. crassa TER 5′-splice site sequence is evolutionarily conserved in TERs from Pezizomycotina and early branching Taphrinomycotina species. This suggests that the widespread and basal N. crassa-type spliceosomal cleavage mechanism is more ancestral than the S. pombe-type. The discovery of a prevalent, yet distinct, spliceosomal cleavage mechanism throughout diverse fungal clades furthers our understanding of TER evolution and non-coding RNA processing.

ContributorsQi, Xiaodong (Author) / Rand, Dustin (Author) / Podlevsky, Joshua (Author) / Li, Yang (Author) / Mosig, Axel (Author) / Stadler, Peter F. (Author) / Chen, Julian (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-01-01
Description

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to the reaction center, where charge separation takes place. The average number of DNA three-arm junctions per reaction center was tuned from 0.75 to 2.35. This DNA-templated multichromophore system serves as a modular light-harvesting antenna that is capable of being optimized for its spectral properties, energy transfer efficiency, and photostability, allowing one to adjust both the size and spectrum of the resulting structures. This may serve as a useful test bed for developing nanostructured photonic systems.

ContributorsDutta, Palash (Author) / Levenberg, Symon (Author) / Loskutov, Andrey (Author) / Jun, Daniel (Author) / Saer, Rafael (Author) / Beatty, J. Thomas (Author) / Lin, Su (Author) / Liu, Yan (Author) / Woodbury, Neal (Author) / Yan, Hao (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-11-26
Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
129374-Thumbnail Image.png
Description

Formally zerovalent (κ3-phosphine)Fe(η4-COT) complexes supported by either Triphos (PhP(CH2CH2PPh2)2) or Triphos* (H3CC(CH2PPh2)3) have been prepared following chelate addition to (COT)2Fe (COT = 1,3,5,7-cyclooctatetraene) and by reduction of the respective dibromide complexes in the presence of excess COT. The solid-state structure of each complex was determined by single-crystal X-ray diffraction, and

Formally zerovalent (κ3-phosphine)Fe(η4-COT) complexes supported by either Triphos (PhP(CH2CH2PPh2)2) or Triphos* (H3CC(CH2PPh2)3) have been prepared following chelate addition to (COT)2Fe (COT = 1,3,5,7-cyclooctatetraene) and by reduction of the respective dibromide complexes in the presence of excess COT. The solid-state structure of each complex was determined by single-crystal X-ray diffraction, and close inspection of the metrical parameters revealed significant COT ligand reduction, independent of the coordination geometry about iron. While the neutral and dianionic forms of the redox-active COT ligand have historically received a great deal of attention, a dearth of information regarding the often-evoked radical monoanion form of this ligand prompted the full electronic structure investigation of these complexes using a range of techniques. Comparison of the Mössbauer spectroscopic data collected for both (Triphos)Fe(η4-COT) complexes with data obtained for two appropriate reference compounds indicated that they possess a low-spin Fe(I) center that is antiferromagnetically coupled to a COT radical monoanion. Further evidence for this electronic structure determination by EPR spectroscopy and cyclic voltammetry is presented. A comparison of the solid-state metrical parameters determined in this study to those of related first-row transition-metal complexes has provided insight into the electronic structure analysis of related organometallic complexes.

ContributorsMukhopadhyay, Tufan (Author) / Flores, Marco (Author) / Feller, Russell K. (Author) / Scott, Brian L. (Author) / Taylor, R. Dean (Author) / Paz-Pasternak, Moshe (Author) / Henson, Neil J. (Author) / Rein, Francisca N. (Author) / Smythe, Nathan C. (Author) / Trovitch, Ryan (Author) / Gordon, John C. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12-22
129270-Thumbnail Image.png
Description

In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a

In proteins, functional divergence involves mutations that modify structure and dynamics. Here we provide experimental evidence for an evolutionary mechanism driven solely by long-range dynamic motions without significant backbone adjustments, catalytic group rearrangements, or changes in subunit assembly. Crystallographic structures were determined for several reconstructed ancestral proteins belonging to a GFP class frequently employed in superresolution microscopy. Their chain flexibility was analyzed using molecular dynamics and perturbation response scanning. The green-to-red photoconvertible phenotype appears to have arisen from a common green ancestor by migration of a knob-like anchoring region away from the active site diagonally across the β barrel fold. The allosterically coupled mutational sites provide active site conformational mobility via epistasis. We propose that light-induced chromophore twisting is enhanced in a reverse-protonated subpopulation, activating internal acid-base chemistry and backbone cleavage to enlarge the chromophore. Dynamics-driven hinge migration may represent a more general platform for the evolution of novel enzyme activities.

ContributorsKim, Hanseong (Author) / Zou, Taisong (Author) / Modi, Chintan (Author) / Dorner, Katerina (Author) / Grunkemeyer, Timothy (Author) / Chen, Liqing (Author) / Fromme, Raimund (Author) / Matz, Mikhail V. (Author) / Ozkan, Sefika (Author) / Wachter, Rebekka (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-01-06
Description

This essay uses census data from the eighteenth century to examine the leadership role of caciques in the Guaraní missions. Cacique succession between 1735 and 1759 confirms that the position of cacique transitioned from the Guaraníes’ flexible interpretation of hereditary succession to the Jesuits’ rigid idea of primogenitor (father to

This essay uses census data from the eighteenth century to examine the leadership role of caciques in the Guaraní missions. Cacique succession between 1735 and 1759 confirms that the position of cacique transitioned from the Guaraníes’ flexible interpretation of hereditary succession to the Jesuits’ rigid idea of primogenitor (father to eldest son) succession. This essay argues that scholars overstate the caciques’ leadership role in the Guaraní missions. Adherence to primogenitor succession did not take into account a candidate's leadership qualities, and thus, some caciques functioned as placeholders for organizing the mission population and calculating tribute and not as active leaders. An assortment of other Guaraní leadership positions compensated for this weakness by providing both access to leadership roles for non-caciques who possessed leadership qualities but not the proper bloodline and additional leadership opportunities for more capable caciques. By taking into account leadership qualities and not just descent, these positions provided flexibility and reflected continuity with pre-contact Guaraní ideas about leadership.

Created2013-11-30
129433-Thumbnail Image.png
Description

Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less

Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less than that flow. Although exclusion has been demonstrated in multiple systems for a range of analytes, a theoretical assessment of resolution has not been addressed. To compare the results of these calculations to traditional techniques, the performance is expressed in terms of smallest difference in electrophoretic mobilities that can be completely separated (R = 1.5). The calculations indicate that closest resolvable species (Δμc) differ by approximately 10-13 m2/Vs and peak capacity (nc) is 1000. Published experimental data were compared to these calculated results.

ContributorsKenyon, Stacy (Author) / Keebaugh, Michael (Author) / Hayes, Mark (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-01
129191-Thumbnail Image.png
Description

Objective: To estimate the absolute wealth of households using data from demographic and health surveys.

Methods: We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using

Objective: To estimate the absolute wealth of households using data from demographic and health surveys.

Methods: We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures.

Findings: The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R-2=0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes.

Conclusion: Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

ContributorsHruschka, Daniel (Author) / Gerkey, Drew (Author) / Hadley, Craig (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-01
129215-Thumbnail Image.png
Description

Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead to macroscopic extended coherent states exhibiting increment in temporal and spatial coherency and a large Rabi splitting. Here, we demonstrate

Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead to macroscopic extended coherent states exhibiting increment in temporal and spatial coherency and a large Rabi splitting. Here, we demonstrate spatial modulation of light transmission through a single microcavity patterned on a freestanding Au film, strongly coupled to one of the most efficient energy transfer photosynthetic proteins in nature, photosystem I. Here we observe a clear correlation between the appearance of spatial modulation of light and molecular photon absorption, accompanied by a 13-fold enhancement in light transmission and the emergence of a distinct electromagnetic standing wave pattern in the cavity. This study provides the path for engineering various types of bio-photonic devices based on the vast diversity of biological molecules in nature.

ContributorsCarmeli, Itai (Author) / Cohen, Moshik (Author) / Heifler, Omri (Author) / Lilach, Yigal (Author) / Zalevsky, Zeev (Author) / Mujica, Vladimiro (Author) / Richter, Shachar (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-06-01