This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 33
Filtering by

Clear all filters

Description

Background: Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static goal setting and immediate vs. delayed, non-contingent financial rewards for

Background: Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static goal setting and immediate vs. delayed, non-contingent financial rewards for increasing free-living physical activity (PA).

Methods: A 4-month 2 × 2 factorial randomized controlled trial tested main effects for goal setting (adaptive vs. static goals) and rewards (immediate vs. delayed) and interactions between factors to increase steps/day as measured by a Fitbit Zip. Moderate-to-vigorous PA (MVPA) minutes/day was examined as a secondary outcome.

Results: Participants (N = 96) were mainly female (77%), aged 41 ± 9.5 years, and all were insufficiently active and overweight/obese (mean BMI = 34.1 ± 6.2). Participants across all groups increased by 2389 steps/day on average from baseline to intervention phase (p < .001). Participants receiving static goals showed a stronger increase in steps per day from baseline phase to intervention phase (2630 steps/day) than those receiving adaptive goals (2149 steps/day; difference = 482 steps/day, p = .095). Participants receiving immediate rewards showed stronger improvement (2762 step/day increase) from baseline to intervention phase than those receiving delayed rewards (2016 steps/day increase; difference = 746 steps/day, p = .009). However, the adaptive goals group showed a slower decrease in steps/day from the beginning of the intervention phase to the end of the intervention phase (i.e. less than half the rate) compared to the static goals group (−7.7 steps vs. -18.3 steps each day; difference = 10.7 steps/day, p < .001) resulting in better improvements for the adaptive goals group by study end. Rate of change over the intervention phase did not differ between reward groups. Significant goal phase x goal setting x reward interactions were observed.

Conclusions: Adaptive goals outperformed static goals (i.e., 10,000 steps) over a 4-month period. Small immediate rewards outperformed larger, delayed rewards. Adaptive goals with either immediate or delayed rewards should be preferred for promoting PA.

ContributorsAdams, Marc (Author) / Hurley, Jane (Author) / Todd, Michael (Author) / Bhuiyan, Nishat (Author) / Jarrett, Catherine (Author) / Tucker, Wesley (Author) / Hollingshead, Kevin (Author) / Angadi, Siddhartha (Author) / College of Health Solutions (Contributor)
Created2017-03-29
Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
Description

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods.

ContributorsHunter, Mark S. (Author) / Segelke, Brent (Author) / Messerschmidt, Marc (Author) / Williams, Garth J. (Author) / Zatsepin, Nadia (Author) / Barty, Anton (Author) / Benner, W. Henry (Author) / Carlson, David B. (Author) / Coleman, Matthew (Author) / Graf, Alexander (Author) / Hau-Riege, Stefan P. (Author) / Pardini, Tommaso (Author) / Seibert, M. Marvin (Author) / Evans, James (Author) / Boutet, Sebastien (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-12
128591-Thumbnail Image.png
Description

Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms

Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ13C ratios of the organic carbon fraction of solids are depleted (−25 to −28‰) relative to the carbonates (−11 to −20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ15N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions.

ContributorsMeyer-Dombard, D'Arcy R. (Author) / Woycheese, Kristin M. (Author) / Yargicoglu, Erin N. (Author) / Cardace, Dawn (Author) / Shock, Everett (Author) / Gulecal-Pektas, Yasemin (Author) / Temel, Mustafa (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-19
127836-Thumbnail Image.png
Description

Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction

Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.

ContributorsCasadei, Cecilia M. (Author) / Tsai, Ching-Ju (Author) / Barty, Anton (Author) / Hunter, Mark S. (Author) / Zatsepin, Nadia (Author) / Padeste, Celestino (Author) / Capitani, Guido (Author) / Benner, W. Henry (Author) / Boutet, Sebastien (Author) / Hau-Riege, Stefan P. (Author) / Kupitz, Christopher (Author) / Messerschmidt, Marc (Author) / Ogren, John I. (Author) / Pardini, Tom (Author) / Rothschild, Kenneth J. (Author) / Sala, Leonardo (Author) / Segelke, Brent (Author) / Williams, Garth J. (Author) / Evans, James E. (Author) / Li, Xiao-Dan (Author) / Coleman, Matthew (Author) / Pedrini, Bill (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2018-01
128833-Thumbnail Image.png
Description

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g-1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.

ContributorsMiller-Coleman, Robin L. (Author) / Dodsworth, Jeremy A. (Author) / Ross, Christian A. (Author) / Shock, Everett (Author) / Williams, Amanda (Author) / Hartnett, Hilairy (Author) / McDonald, Austin I. (Author) / Havig, Jeff (Author) / Hedlund, Brian P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-05-04
128824-Thumbnail Image.png
Description

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions.

ContributorsDick, Jeffrey M. (Author) / Shock, Everett (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-09-02
129016-Thumbnail Image.png
Description

Background: Advancements in geographic information systems over the past two decades have increased the specificity by which an individual’s neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built

Background: Advancements in geographic information systems over the past two decades have increased the specificity by which an individual’s neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built environment measures (BEMs) and tested their performance on associations with physical activity outcomes.

Methods: An internationally-developed set of objective BEMs using three different spatial buffering techniques were used to evaluate the relative differences in resulting explanatory power on self-reported physical activity outcomes. BEMs were developed in five countries using ‘sausage,’ ‘detailed-trimmed,’ and ‘detailed,’ network buffers at a distance of 1 km around participant household addresses (n = 5883).

Results: BEM values were significantly different (p < 0.05) for 96% of sausage versus detailed-trimmed buffer comparisons and 89% of sausage versus detailed network buffer comparisons. Results showed that BEM coefficients in physical activity models did not differ significantly across buffering methods, and in most cases BEM associations with physical activity outcomes had the same level of statistical significance across buffer types. However, BEM coefficients differed in significance for 9% of the sausage versus detailed models, which may warrant further investigation.

Conclusions: Results of this study inform the selection of spatial buffering methods to estimate physical activity outcomes using an internationally consistent set of BEMs. Using three different network-based buffering methods, the findings indicate significant variation among BEM values, however associations with physical activity outcomes were similar across each buffering technique. The study advances knowledge by presenting consistently assessed relationships between three different network buffer types and utilitarian travel, sedentary behavior, and leisure-oriented physical activity outcomes.

ContributorsFrank, Lawrence D. (Author) / Fox, Eric H. (Author) / Ulmer, Jared M. (Author) / Chapman, James E. (Author) / Kershaw, Suzanne E. (Author) / Sallis, James F. (Author) / Conway, Terry L. (Author) / Cerin, Ester (Author) / Cain, Kelli L. (Author) / Adams, Marc (Author) / Smith, Graham R. (Author) / Hinckson, Erica (Author) / Mavoa, Suzanne (Author) / Christiansen, Lars B. (Author) / Hino, Adriano Akira F. (Author) / Lopes, Adalberto A. S. (Author) / Schipperijn, Jasper (Author) / College of Health Solutions (Contributor)
Created2017-01-23
129015-Thumbnail Image.png
Description

Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This

Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This paper documents variation in comparable built environment features across countries from diverse regions.

Methods: The International Physical Activity and the Environment Network (IPEN) study of adults aimed to measure the full range of variation in the built environment using geographic information systems (GIS) across 12 countries on 5 continents. Investigators in Australia, Belgium, Brazil, Colombia, the Czech Republic, Denmark, China, Mexico, New Zealand, Spain, the United Kingdom, and the United States followed a common research protocol to develop internationally comparable measures. Using detailed instructions, GIS-based measures included features such as walkability (i.e., residential density, street connectivity, mix of land uses), and access to public transit, parks, and private recreation facilities around each participant’s residential address using 1-km and 500-m street network buffers.

Results: Eleven of 12 countries and 15 cities had objective GIS data on built environment features. We observed a 38-fold difference in median residential densities, a 5-fold difference in median intersection densities and an 18-fold difference in median park densities. Hong Kong had the highest and North Shore, New Zealand had the lowest median walkability index values, representing a difference of 9 standard deviations in GIS-measured walkability.

Conclusions: Results show that comparable measures can be created across a range of cultural settings revealing profound global differences in urban form relevant to physical activity. These measures allow cities to be ranked more precisely than previously possible. The highly variable measures of urban form will be used to explain individuals’ physical activity, sedentary behaviors, body mass index, and other health outcomes on an international basis. Present measures provide the ability to estimate dose–response relationships from projected changes to the built environment that would otherwise be impossible.

ContributorsAdams, Marc (Author) / Frank, Lawrence D. (Author) / Schipperijn, Jasper (Author) / Smith, Graham (Author) / Chapman, James (Author) / Christiansen, Lars B. (Author) / Coffee, Neil (Author) / Salvo, Deborah (Author) / du Toit, Lorinne (Author) / Dygryn, Jan (Author) / Hino, Adriano Akira Ferreira (Author) / Lai, Poh-chin (Author) / Mavoa, Suzanne (Author) / Pinzon, Jose David (Author) / Van de Weghe, Nico (Author) / Cerin, Ester (Author) / Davey, Rachel (Author) / Macfarlane, Duncan (Author) / Owen, Neville (Author) / Sallis, James F. (Author) / College of Health Solutions (Contributor)
Created2014-10-25
129243-Thumbnail Image.png
Description

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via

It has been suggested that the extended intensity profiles surrounding Bragg reflections that arise when a series of finite crystals of varying size and shape are illuminated by the intense, coherent illumination of an x-ray free-electron laser may enable the crystal’s unit-cell electron density to be obtained ab initio via well-established iterative phasing algorithms. Such a technique could have a significant impact on the field of biological structure determination since it avoids the need for a priori information from similar known structures, multiple measurements near resonant atomic absorption energies, isomorphic derivative crystals, or atomic-resolution data. Here, we demonstrate this phasing technique on diffraction patterns recorded from artificial two-dimensional microcrystals using the seeded soft x-ray free-electron laser FERMI. We show that the technique is effective when the illuminating wavefront has nonuniform phase and amplitude, and when the diffraction intensities cannot be measured uniformly throughout reciprocal space because of a limited signal-to-noise ratio.

ContributorsKirian, Richard (Author) / Bean, Richard J. (Author) / Beyerlein, Kenneth R. (Author) / Barthelmess, Miriam (Author) / Yoon, Chun Hong (Author) / Wang, Fenglin (Author) / Capotondi, Flavio (Author) / Pedersoli, Emanuele (Author) / Barty, Anton (Author) / Chapman, Henry N. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-12