This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 26
Filtering by

Clear all filters

128003-Thumbnail Image.png
Description

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.

ContributorsTaylor, Sarah (Author) / Lewis, Candace (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-08
Description

Background: Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static goal setting and immediate vs. delayed, non-contingent financial rewards for

Background: Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static goal setting and immediate vs. delayed, non-contingent financial rewards for increasing free-living physical activity (PA).

Methods: A 4-month 2 × 2 factorial randomized controlled trial tested main effects for goal setting (adaptive vs. static goals) and rewards (immediate vs. delayed) and interactions between factors to increase steps/day as measured by a Fitbit Zip. Moderate-to-vigorous PA (MVPA) minutes/day was examined as a secondary outcome.

Results: Participants (N = 96) were mainly female (77%), aged 41 ± 9.5 years, and all were insufficiently active and overweight/obese (mean BMI = 34.1 ± 6.2). Participants across all groups increased by 2389 steps/day on average from baseline to intervention phase (p < .001). Participants receiving static goals showed a stronger increase in steps per day from baseline phase to intervention phase (2630 steps/day) than those receiving adaptive goals (2149 steps/day; difference = 482 steps/day, p = .095). Participants receiving immediate rewards showed stronger improvement (2762 step/day increase) from baseline to intervention phase than those receiving delayed rewards (2016 steps/day increase; difference = 746 steps/day, p = .009). However, the adaptive goals group showed a slower decrease in steps/day from the beginning of the intervention phase to the end of the intervention phase (i.e. less than half the rate) compared to the static goals group (−7.7 steps vs. -18.3 steps each day; difference = 10.7 steps/day, p < .001) resulting in better improvements for the adaptive goals group by study end. Rate of change over the intervention phase did not differ between reward groups. Significant goal phase x goal setting x reward interactions were observed.

Conclusions: Adaptive goals outperformed static goals (i.e., 10,000 steps) over a 4-month period. Small immediate rewards outperformed larger, delayed rewards. Adaptive goals with either immediate or delayed rewards should be preferred for promoting PA.

ContributorsAdams, Marc (Author) / Hurley, Jane (Author) / Todd, Michael (Author) / Bhuiyan, Nishat (Author) / Jarrett, Catherine (Author) / Tucker, Wesley (Author) / Hollingshead, Kevin (Author) / Angadi, Siddhartha (Author) / College of Health Solutions (Contributor)
Created2017-03-29
Description

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth’s oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the ‘dangler’ Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.

ContributorsKupitz, Christopher (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Fromme, Raimund (Author) / Zatsepin, Nadia (Author) / Rendek, Kimberly (Author) / Hunter, Mark (Author) / Shoeman, Robert L. (Author) / White, Thomas A. (Author) / Wang, Dingjie (Author) / James, Daniel (Author) / Yang, Jay-How (Author) / Cobb, Danielle (Author) / Reeder, Brenda (Author) / Sierra, Raymond G. (Author) / Liu, Haiguang (Author) / Barty, Anton (Author) / Aquila, Andrew L. (Author) / Deponte, Daniel (Author) / Kirian, Richard (Author) / Bari, Sadia (Author) / Bergkamp, Jesse (Author) / Beyerlein, Kenneth R. (Author) / Bogan, Michael J. (Author) / Caleman, Carl (Author) / Chao, Tzu-Chiao (Author) / Conrad, Chelsie (Author) / Davis, Katherine M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-11
Description

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods.

ContributorsHunter, Mark S. (Author) / Segelke, Brent (Author) / Messerschmidt, Marc (Author) / Williams, Garth J. (Author) / Zatsepin, Nadia (Author) / Barty, Anton (Author) / Benner, W. Henry (Author) / Carlson, David B. (Author) / Coleman, Matthew (Author) / Graf, Alexander (Author) / Hau-Riege, Stefan P. (Author) / Pardini, Tommaso (Author) / Seibert, M. Marvin (Author) / Evans, James (Author) / Boutet, Sebastien (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-12
Description

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the Wistar Kyoto (WKY) control strain over a range of nicotine doses (0.0, 0.1, 0.3 and 0.6 mg/kg). Prior to conditioning, SHRs were more active and less biased toward one side of the CPP chamber than WKY rats. Following conditioning, SHRs developed CPP to the highest dose of nicotine (0.6 mg/kg), whereas WKYs did not develop CPP to any nicotine dose tested. During conditioning, SHRs displayed greater locomotor activity in the nicotine-paired compartment than in the saline-paired compartment across conditioning trials. SHRs that received nicotine (0.1, 0.3, 0.6 mg/kg) in the nicotine-paired compartment showed an increase in locomotor activity between conditioning trials. Nicotine did not significantly affect WKY locomotor activity. These findings suggest that the SHR strain is a suitable model for studying ADHD-related nicotine use and dependence, but highlights potential limitations of the WKY control strain and the CPP procedure for modeling ADHD-related nicotine reward.

ContributorsWatterson, Elizabeth (Author) / Daniels, Carter (Author) / Watterson, Lucas (Author) / Mazur, Gabriel (Author) / Brackney, Ryan (Author) / Olive, M. Foster (Author) / Sanabria, Federico (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-15
128733-Thumbnail Image.png
Description

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

ContributorsWatterson, Lucas (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-30
127836-Thumbnail Image.png
Description

Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction

Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.

ContributorsCasadei, Cecilia M. (Author) / Tsai, Ching-Ju (Author) / Barty, Anton (Author) / Hunter, Mark S. (Author) / Zatsepin, Nadia (Author) / Padeste, Celestino (Author) / Capitani, Guido (Author) / Benner, W. Henry (Author) / Boutet, Sebastien (Author) / Hau-Riege, Stefan P. (Author) / Kupitz, Christopher (Author) / Messerschmidt, Marc (Author) / Ogren, John I. (Author) / Pardini, Tom (Author) / Rothschild, Kenneth J. (Author) / Sala, Leonardo (Author) / Segelke, Brent (Author) / Williams, Garth J. (Author) / Evans, James E. (Author) / Li, Xiao-Dan (Author) / Coleman, Matthew (Author) / Pedrini, Bill (Author) / Frank, Matthias (Author) / College of Liberal Arts and Sciences (Contributor)
Created2018-01
128803-Thumbnail Image.png
Description

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density.

ContributorsGross, Kellie S. (Author) / Brandner, Dieter D. (Author) / Martinez, Luis A. (Author) / Olive, M. Foster (Author) / Meisel, Robert L. (Author) / Mermelstein, Paul G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-12
129016-Thumbnail Image.png
Description

Background: Advancements in geographic information systems over the past two decades have increased the specificity by which an individual’s neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built

Background: Advancements in geographic information systems over the past two decades have increased the specificity by which an individual’s neighborhood environment may be spatially defined for physical activity and health research. This study investigated how different types of street network buffering methods compared in measuring a set of commonly used built environment measures (BEMs) and tested their performance on associations with physical activity outcomes.

Methods: An internationally-developed set of objective BEMs using three different spatial buffering techniques were used to evaluate the relative differences in resulting explanatory power on self-reported physical activity outcomes. BEMs were developed in five countries using ‘sausage,’ ‘detailed-trimmed,’ and ‘detailed,’ network buffers at a distance of 1 km around participant household addresses (n = 5883).

Results: BEM values were significantly different (p < 0.05) for 96% of sausage versus detailed-trimmed buffer comparisons and 89% of sausage versus detailed network buffer comparisons. Results showed that BEM coefficients in physical activity models did not differ significantly across buffering methods, and in most cases BEM associations with physical activity outcomes had the same level of statistical significance across buffer types. However, BEM coefficients differed in significance for 9% of the sausage versus detailed models, which may warrant further investigation.

Conclusions: Results of this study inform the selection of spatial buffering methods to estimate physical activity outcomes using an internationally consistent set of BEMs. Using three different network-based buffering methods, the findings indicate significant variation among BEM values, however associations with physical activity outcomes were similar across each buffering technique. The study advances knowledge by presenting consistently assessed relationships between three different network buffer types and utilitarian travel, sedentary behavior, and leisure-oriented physical activity outcomes.

ContributorsFrank, Lawrence D. (Author) / Fox, Eric H. (Author) / Ulmer, Jared M. (Author) / Chapman, James E. (Author) / Kershaw, Suzanne E. (Author) / Sallis, James F. (Author) / Conway, Terry L. (Author) / Cerin, Ester (Author) / Cain, Kelli L. (Author) / Adams, Marc (Author) / Smith, Graham R. (Author) / Hinckson, Erica (Author) / Mavoa, Suzanne (Author) / Christiansen, Lars B. (Author) / Hino, Adriano Akira F. (Author) / Lopes, Adalberto A. S. (Author) / Schipperijn, Jasper (Author) / College of Health Solutions (Contributor)
Created2017-01-23
129015-Thumbnail Image.png
Description

Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This

Background: The World Health Organization recommends strategies to improve urban design, public transportation, and recreation facilities to facilitate physical activity for non-communicable disease prevention for an increasingly urbanized global population. Most evidence supporting environmental associations with physical activity comes from single countries or regions with limited variation in urban form. This paper documents variation in comparable built environment features across countries from diverse regions.

Methods: The International Physical Activity and the Environment Network (IPEN) study of adults aimed to measure the full range of variation in the built environment using geographic information systems (GIS) across 12 countries on 5 continents. Investigators in Australia, Belgium, Brazil, Colombia, the Czech Republic, Denmark, China, Mexico, New Zealand, Spain, the United Kingdom, and the United States followed a common research protocol to develop internationally comparable measures. Using detailed instructions, GIS-based measures included features such as walkability (i.e., residential density, street connectivity, mix of land uses), and access to public transit, parks, and private recreation facilities around each participant’s residential address using 1-km and 500-m street network buffers.

Results: Eleven of 12 countries and 15 cities had objective GIS data on built environment features. We observed a 38-fold difference in median residential densities, a 5-fold difference in median intersection densities and an 18-fold difference in median park densities. Hong Kong had the highest and North Shore, New Zealand had the lowest median walkability index values, representing a difference of 9 standard deviations in GIS-measured walkability.

Conclusions: Results show that comparable measures can be created across a range of cultural settings revealing profound global differences in urban form relevant to physical activity. These measures allow cities to be ranked more precisely than previously possible. The highly variable measures of urban form will be used to explain individuals’ physical activity, sedentary behaviors, body mass index, and other health outcomes on an international basis. Present measures provide the ability to estimate dose–response relationships from projected changes to the built environment that would otherwise be impossible.

ContributorsAdams, Marc (Author) / Frank, Lawrence D. (Author) / Schipperijn, Jasper (Author) / Smith, Graham (Author) / Chapman, James (Author) / Christiansen, Lars B. (Author) / Coffee, Neil (Author) / Salvo, Deborah (Author) / du Toit, Lorinne (Author) / Dygryn, Jan (Author) / Hino, Adriano Akira Ferreira (Author) / Lai, Poh-chin (Author) / Mavoa, Suzanne (Author) / Pinzon, Jose David (Author) / Van de Weghe, Nico (Author) / Cerin, Ester (Author) / Davey, Rachel (Author) / Macfarlane, Duncan (Author) / Owen, Neville (Author) / Sallis, James F. (Author) / College of Health Solutions (Contributor)
Created2014-10-25