This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 26 of 26
Filtering by

Clear all filters

128090-Thumbnail Image.png
Description

Background: Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives: The first objective of this work was to catalyze discussion of the role of personal

Background: Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives: The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.

Discussion: We define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time–activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat.

Conclusions: Personal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure.

ContributorsKuras, Evan (Author) / Richardson, Molly B. (Author) / Calkins, Miriam M. (Author) / Ebi, Kristie L. (Author) / Hess, Jeremy J. (Author) / Kintziger, Kristina W. (Author) / Jagger, Meredith A. (Author) / Middel, Ariane (Author) / Scott, Anna A. (Author) / Spector, June T. (Author) / Uejio, Christopher K. (Author) / Vanos, Jennifer K. (Author) / Zaitchik, Benjamin F. (Author) / Gohlke, Julia M. (Author) / Hondula, David M. (Author) / College of Public Service and Community Solutions (Contributor)
Created2017-08-01
128336-Thumbnail Image.png
Description

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments

Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella, we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.

ContributorsBarrila, Jennifer (Author) / Yang, Jiseon (Author) / Crabbe, Aurelie (Author) / Sarker, Shameema (Author) / Liu, Yulong (Author) / Ott, C. Mark (Author) / Nelman-Gonzalez, Mayra A. (Author) / Clemett, Simon J. (Author) / Nydam, Seth (Author) / Forsyth, Rebecca (Author) / Davis, Richard (Author) / Crucian, Brian E. (Author) / Quiriarte, Heather (Author) / Roland, Kenneth (Author) / Brenneman, Karen (Author) / Sams, Clarence (Author) / Loscher, Christine (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2017-02-28
128161-Thumbnail Image.png
Description

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas, NV, USA). Sequential Landsat images were acquired and classified into

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas, NV, USA). Sequential Landsat images were acquired and classified into the USGS 24-category Land Use Categories using object-based image analysis with an overall accuracy of 80% to 95.5%. We estimated the land surface temperature (LST) of all available Landsat data from June to August for years 1990, 2000, and 2010 and computed the urban-rural difference in the average LST and Normalized Difference Vegetation Index (NDVI) for each city. Leveraging non-parametric statistical analysis, we also investigated the impacts of city size and population on the urban-rural difference in the summer daytime LST and NDVI. Urban expansion is observed for all five cities, but the urbanization pattern varies widely from city to city. A negative SUHI effect or an oasis effect exists for all the cities across all three years, and the amplitude of the oasis effect tends to increase as the urban-rural NDVI difference increases. A strong oasis effect is observed for Hotan and Kharga with evidently larger NDVI difference than the other cities. Larger cities tend to have a weaker cooling effect while a negative association is identified between NDVI difference and population. Understanding the daytime oasis effect of desert cities is vital for sustainable urban planning and the design of adaptive management, providing valuable guidelines to foster smart desert cities in an era of climate variability, uncertainty, and change.

ContributorsFan, Chao (Author) / Myint, Soe (Author) / Kaplan, Shai (Author) / Middel, Ariane (Author) / Zheng, Baojuan (Author) / Rahman, Atiqur (Author) / Huang, Huei-Ping (Author) / Brazel, Anthony J. (Author) / Blumberg, Dan G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-30
128127-Thumbnail Image.png
Description

Salmonella enterica serovar Typhimurium strains belonging to sequence type ST313 are a major cause of fatal bacteremia among HIV-infected adults and children in sub-Saharan Africa. Unlike “classical” non-typhoidal Salmonella (NTS), gastroenteritis is often absent during ST313 infections and isolates are most commonly recovered from blood, rather than from stool. This

Salmonella enterica serovar Typhimurium strains belonging to sequence type ST313 are a major cause of fatal bacteremia among HIV-infected adults and children in sub-Saharan Africa. Unlike “classical” non-typhoidal Salmonella (NTS), gastroenteritis is often absent during ST313 infections and isolates are most commonly recovered from blood, rather than from stool. This is consistent with observations in animals, in which ST313 strains displayed lower levels of intestinal colonization and higher recovery from deeper tissues relative to classic NTS isolates. A better understanding of the key environmental factors regulating these systemic infections is urgently needed. Our previous studies using dynamic Rotating Wall Vessel (RWV) bioreactor technology demonstrated that physiological levels of fluid shear regulate virulence, gene expression, and stress response profiles of classic S. Typhimurium. Here we provide the first demonstration that fluid shear alters the virulence potential and pathogenesis-related stress responses of ST313 strain D23580 in a manner that differs from classic NTS.

ContributorsYang, Jiseon (Author) / Barrila, Jennifer (Author) / Roland, Kenneth (Author) / Ott, C. Mark (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-06-09
128123-Thumbnail Image.png
Description

Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a

Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1, HSP27, GPX1, XRCC1, BAG-1, HHR23A, FAP48, and C-FOS. No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

ContributorsBarrila, Jennifer (Author) / Ott, C. Mark (Author) / LeBlanc, Carly (Author) / Mehta, Satish K. (Author) / Crabbe, Aurelie (Author) / Stafford, Phillip (Author) / Pierson, Duane L. (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-12-08
128185-Thumbnail Image.png
Description

The Sky View Factor (SVF) is a dimension-reduced representation of urban form and one of the major variables in radiation models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing fisheye photographs or creating a digital 3D city or elevation model of the environment.

The Sky View Factor (SVF) is a dimension-reduced representation of urban form and one of the major variables in radiation models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing fisheye photographs or creating a digital 3D city or elevation model of the environment. Such techniques have previously been limited due to a lack of imagery or lack of full scale detailed models of urban areas. We developed a web based tool that automatically generates synthetic hemispherical fisheye views from Google Earth at arbitrary spatial resolution and calculates the corresponding SVFs through equiangular projection. SVF results were validated using Google Maps Street View and compared to results from other SVF calculation tools. We generated 5-meter resolution SVF maps for two neighborhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and vegetation. To demonstrate the utility of our synthetic fisheye approach for heat stress applications, we automated a radiation model to generate outdoor thermal comfort maps for Arizona State University’s Tempe campus for a hot summer day using synthetic fisheye photos and on-site meteorological data. Model output was tested against mobile transect measurements of the six-directional radiant flux density. Based on the thermal comfort maps, we implemented a pedestrian routing algorithm that is optimized for distance and thermal comfort preferences. Our synthetic fisheye approach can help planners assess urban design and tree planting strategies to maximize thermal comfort outcomes and can support heat hazard mitigation in urban areas.

ContributorsMiddel, Ariane (Author) / Lukasczyk, Jonas (Author) / Maciejewski, Ross (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-03-27