This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 412
Filtering by

Clear all filters

129572-Thumbnail Image.png
Description

X-ray tomography has provided a non-destructive means for microstructure characterization in three and four dimensions. A stochastic procedure to accurately reconstruct material microstructure from limited-angle X-ray tomographic projections is presented and its utility is demonstrated by reconstructing a variety of distinct heterogeneous materials and elucidating the information content of different

X-ray tomography has provided a non-destructive means for microstructure characterization in three and four dimensions. A stochastic procedure to accurately reconstruct material microstructure from limited-angle X-ray tomographic projections is presented and its utility is demonstrated by reconstructing a variety of distinct heterogeneous materials and elucidating the information content of different projection data sets. A small number of projections (e.g. 20–40) are necessary for accurate reconstructions via the stochastic procedure, indicating its high efficiency in using limited structural information.

ContributorsLi, Hechao (Author) / Chawla, Nikhilesh (Author) / Jiao, Yang (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-09-01
129577-Thumbnail Image.png
Description

Numerous recent investigations have been devoted to the determination of the equilibrium phase behavior and packing characteristics of hard nonspherical particles, including ellipsoids, superballs, and polyhedra, to name but just a few shapes. Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and

Numerous recent investigations have been devoted to the determination of the equilibrium phase behavior and packing characteristics of hard nonspherical particles, including ellipsoids, superballs, and polyhedra, to name but just a few shapes. Systems of hard nonspherical particles exhibit a variety of stable phases with different degrees of translational and orientational order, including isotropic liquid, solid crystal, rotator and a variety of liquid crystal phases. In this paper, we employ a Monte Carlo implementation of the adaptive-shrinking-cell (ASC) numerical scheme and free-energy calculations to ascertain with high precision the equilibrium phase behavior of systems of congruent Archimedean truncated tetrahedra over the entire range of possible densities up to the maximal nearly space-filling density. In particular, we find that the system undergoes two first-order phase transitions as the density increases: first a liquid–solid transition and then a solid–solid transition. The isotropic liquid phase coexists with the Conway–Torquato (CT) crystal phase at intermediate densities, verifying the result of a previous qualitative study [J. Chem. Phys. 2011, 135, 151101]. The freezing- and melting-point packing fractions for this transition are respectively ϕF = 0.496 ± 0.006 and ϕM = 0.591 ± 0.005.

At higher densities, we find that the CT phase undergoes another first-order phase transition to one associated with the densest-known crystal, with coexistence densities in the range ϕ ∈ [0.780 ± 0.002, 0.802 ± 0.003]. We find no evidence for stable rotator (or plastic) or nematic phases. We also generate the maximally random jammed (MRJ) packings of truncated tetrahedra, which may be regarded to be the glassy end state of a rapid compression of the liquid. Specifically, we systematically study the structural characteristics of the MRJ packings, including the centroidal pair correlation function, structure factor and orientational pair correlation function. We find that such MRJ packings are hyperuniform with an average packing fraction of 0.770, which is considerably larger than the corresponding value for identical spheres (≈ 0.64). We conclude with some simple observations concerning what types of phase transitions might be expected in general hard-particle systems based on the particle shape and which would be good glass formers.

ContributorsChen, Duyu (Author) / Jiao, Yang (Author) / Torquato, Salvatore (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-17
129581-Thumbnail Image.png
Description

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of social-ecological systems (SESs) is still underdeveloped. We seek to help fill this gap by exploring some patterns of transformation in SESs and the question of what factors help explain the persistence of cooperation in the use of common-pool resources through transformative change. Through the analysis of 89 forest commons in South Korea that experienced such transformations, we found that there are two broad types of transformation, cooperative and noncooperative. We also found that two system-level properties, transaction costs associated group size and network diversity, may affect the direction of transformation. SESs with smaller group sizes and higher network diversity may better organize cooperative transformations when the existing system becomes untenable.

ContributorsYu, David (Author) / Anderies, John (Author) / Lee, Dowon (Author) / Perez, Irene (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
Description

Background: Styrene is an important building-block petrochemical and monomer used to produce numerous plastics. Whereas styrene bioproduction by Escherichia coli was previously reported, the long-term potential of this approach will ultimately rely on the use of hosts with improved industrial phenotypes, such as the yeast Saccharomyces cerevisiae.

Results: Classical metabolic evolution was first

Background: Styrene is an important building-block petrochemical and monomer used to produce numerous plastics. Whereas styrene bioproduction by Escherichia coli was previously reported, the long-term potential of this approach will ultimately rely on the use of hosts with improved industrial phenotypes, such as the yeast Saccharomyces cerevisiae.

Results: Classical metabolic evolution was first applied to isolate a mutant capable of phenylalanine over-production to 357 mg/L. Transcription analysis revealed up-regulation of several phenylalanine biosynthesis pathway genes including ARO3, encoding the bottleneck enzyme DAHP synthase. To catalyze the first pathway step, phenylalanine ammonia lyase encoded by PAL2 from A. thaliana was constitutively expressed from a high copy plasmid. The final pathway step, phenylacrylate decarboxylase, was catalyzed by the native FDC1. Expression of FDC1 was naturally induced by trans-cinnamate, the pathway intermediate and its substrate, at levels sufficient for ensuring flux through the pathway. Deletion of ARO10 to eliminate the competing Ehrlich pathway and expression of a feedback-resistant DAHP synthase encoded by ARO4[subscript K229L] preserved and promoted the endogenous availability precursor phenylalanine, leading to improved pathway flux and styrene production. These systematic improvements allowed styrene titers to ultimately reach 29 mg/L at a glucose yield of 1.44 mg/g, a 60% improvement over the initial strain.

Conclusions: The potential of S. cerevisiae as a host for renewable styrene production has been demonstrated. Significant strain improvements, however, will ultimately be needed to achieve economical production levels.

ContributorsMcKenna, Rebekah (Author) / Thompson, Brian (Author) / Pugh, Shawn (Author) / Nielsen, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-21
129524-Thumbnail Image.png
Description

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this

The relation between flux and fluctuation is fundamental to complex physical systems that support and transport flows. A recently obtained law predicts monotonous enhancement of fluctuation as the average flux is increased, which in principle is valid but only for large systems. For realistic complex systems of small sizes, this law breaks down when both the average flux and fluctuation become large. Here we demonstrate the failure of this law in small systems using real data and model complex networked systems, derive analytically a modified flux-fluctuation law, and validate it through computations of a large number of complex networked systems. Our law is more general in that its predictions agree with numerics and it reduces naturally to the previous law in the limit of large system size, leading to new insights into the flow dynamics in small-size complex systems with significant implications for the statistical and scaling behaviors of small systems, a topic of great recent interest.

ContributorsHuang, Zi-Gang (Author) / Dong, Jia-Qi (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-27
129525-Thumbnail Image.png
Description

The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetime

The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetime values in the immediate vicinity of dark-line defects in CdTe/MgCdTe double heterostructures. A series of PL images captured during the decay process show that extended defects with a density of 1.4 × 105 cm-2 deplete photogenerated charge carriers from the surrounding semiconductor material on a nanosecond time scale. The technique makes it possible to elucidate the interplay between nonradiative carrier recombination and carrier diffusion and reveals that they both combine to degrade the PL intensity over a fractional area that is much larger than the physical size of the defects. Carrier lifetimes are correctly determined from numerical simulations of the decay behavior by taking these two effects into account. Our study demonstrates that it is crucial to measure and account for the influence of local defects in the measurement of carrier lifetime and diffusion, which are key transport parameters for the design and modeling of advanced solar-cell and light-emitting devices.

ContributorsFluegel, B. (Author) / Alberi, K. (Author) / DiNezza, Michael J. (Author) / Liu, S. (Author) / Zhang, Yong-Hang (Author) / Mascarenhas, A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-09-24
129526-Thumbnail Image.png
Description

Chemical vapor deposition-based sulfur passivation using hydrogen sulfide is carried out on both n-type and p-type Si(100) wafers. Al contacts are fabricated on sulfur-passivated Si(100) wafers and the resultant Schottky barriers are characterized with current–voltage (I–V), capacitance–voltage (C–V) and activation-energy methods. Al/S-passivated n-type Si(100) junctions exhibit ohmic behavior with a

Chemical vapor deposition-based sulfur passivation using hydrogen sulfide is carried out on both n-type and p-type Si(100) wafers. Al contacts are fabricated on sulfur-passivated Si(100) wafers and the resultant Schottky barriers are characterized with current–voltage (I–V), capacitance–voltage (C–V) and activation-energy methods. Al/S-passivated n-type Si(100) junctions exhibit ohmic behavior with a barrier height of <0.078 eV by the I–V method and significantly lower than 0.08 eV by the activation-energy method. For Al/S-passivated p-type Si(100) junctions, the barrier height is ~0.77 eV by I–V and activation-energy methods and 1.14 eV by the C–V method. The discrepancy between C–V and other methods is explained by image force-induced barrier lowering and edge-leakage current. The I–V behavior of an Al/S-passivated p-type Si(100) junction remains largely unchanged after 300 °C annealing in air. It is also discovered that heating the S-passivated Si(100) wafer before Al deposition significantly improves the thermal stability of an Al/S-passivated n-type Si(100) junction to 500 °C.

ContributorsZhang, Haifeng (Author) / Saha, Arunodoy (Author) / Sun, Wen-Cheng (Author) / Tao, Meng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-09-01
129539-Thumbnail Image.png
Description

The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database—the Alzheimer's

The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database—the Alzheimer's Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling's T2 test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the nondemented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD.

ContributorsShi, Jie (Author) / Lepore, Natasha (Author) / Gutman, Boris A. (Author) / Thompson, Paul M. (Author) / Baxter, Leslie C. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-01
129544-Thumbnail Image.png
Description

In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important

In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design.

ContributorsPeng, Chi-Han (Author) / Yang, Yong-Liang (Author) / Wonka, Peter (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-01
129462-Thumbnail Image.png
Description

We develop a general framework to analyze the controllability of multiplex networks using multiple-relation networks and multiple-layer networks with interlayer couplings as two classes of prototypical systems. In the former, networks associated with different physical variables share the same set of nodes and in the latter, diffusion processes take place.

We develop a general framework to analyze the controllability of multiplex networks using multiple-relation networks and multiple-layer networks with interlayer couplings as two classes of prototypical systems. In the former, networks associated with different physical variables share the same set of nodes and in the latter, diffusion processes take place. We find that, for a multiple-relation network, a layer exists that dominantly determines the controllability of the whole network and, for a multiple-layer network, a small fraction of the interconnections can enhance the controllability remarkably. Our theory is generally applicable to other types of multiplex networks as well, leading to significant insights into the control of complex network systems with diverse structures and interacting patterns.

ContributorsYuan, Zhengzhong (Author) / Zhao, Chen (Author) / Wang, Wen-Xu (Author) / Di, Zengru (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-10-24