This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

129275-Thumbnail Image.png
Description

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.

ContributorsPark, Youngyong (Author) / Do, Younghae (Author) / Altmeyer, Sebastian (Author) / Lai, Ying-Cheng (Author) / Lee, GyuWon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
128531-Thumbnail Image.png
Description

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-21