This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 27
Filtering by

Clear all filters

Description

Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support

Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.

ContributorsNunes Da Rocha, Ulisses (Author) / Cadillo-Quiroz, Hinsby (Author) / Karaoz, Ulas (Author) / Rajeev, Lara (Author) / Klitgord, Niels (Author) / Dunn, Sean (Author) / Truong, Viet (Author) / Buenrostro, Mayra (Author) / Bowen, Benjamin P. (Author) / Garcia-Pichel, Ferran (Author) / Mukhopadhyay, Aindrila (Author) / Northen, Trent R. (Author) / Brodie, Eoin L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-19
128586-Thumbnail Image.png
Description

The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB,

The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (ΔscyD, ΔscyE, and ΔscyF) and their phenotypes studied. Expectedly, ΔscyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ΔscyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ΔscyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.

ContributorsFerreira, Daniela (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-18
127874-Thumbnail Image.png
Description

The lack of lipidome analytical tools has limited our ability to gain new knowledge about lipid metabolism in microalgae, especially for membrane glycerolipids. An electrospray ionization mass spectrometry-based lipidomics method was developed for Nannochloropsis oceanica IMET1, which resolved 41 membrane glycerolipids molecular species belonging to eight classes. Changes in membrane

The lack of lipidome analytical tools has limited our ability to gain new knowledge about lipid metabolism in microalgae, especially for membrane glycerolipids. An electrospray ionization mass spectrometry-based lipidomics method was developed for Nannochloropsis oceanica IMET1, which resolved 41 membrane glycerolipids molecular species belonging to eight classes. Changes in membrane glycerolipids under nitrogen deprivation and high-light (HL) conditions were uncovered. The results showed that the amount of plastidial membrane lipids including monogalactosyldiacylglycerol, phosphatidylglycerol, and the extraplastidic lipids diacylglyceryl-O-4′-(N, N, N,-trimethyl) homoserine and phosphatidylcholine decreased drastically under HL and nitrogen deprivation stresses. Algal cells accumulated considerably more digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerols under stresses. The genes encoding enzymes responsible for biosynthesis, modification and degradation of glycerolipids were identified by mining a time-course global RNA-seq data set. It suggested that reduction in lipid contents under nitrogen deprivation is not attributable to the retarded biosynthesis processes, at least at the gene expression level, as most genes involved in their biosynthesis were unaffected by nitrogen supply, yet several genes were significantly up-regulated. Additionally, a conceptual eicosapentaenoic acid (EPA) biosynthesis network is proposed based on the lipidomic and transcriptomic data, which underlined import of EPA from cytosolic glycerolipids to the plastid for synthesizing EPA-containing chloroplast membrane lipids.

ContributorsHan, Danxiang (Author) / Jia, Jing (Author) / Li, Jing (Author) / Sommerfeld, Milton (Author) / Xu, Jian (Author) / Hu, Qiang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-04
129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129253-Thumbnail Image.png
Description

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy electron diffraction, x-ray diffraction, and high-resolution electron microscopy. In situ x-ray photoelectron spectroscopy was used to confirm the presence of the oxygen-deficient layer. Electrical characterization indicates sheet carrier densities of ∼1013 cm−2 at room temperature for the sample deposited at 700 °C, with a maximum electron Hall mobility of 3100 cm2V-1s-1 at 3.2 K and room temperature mobility of 22 cm2V-1s-1. Annealing in oxygen is found to reduce the carrier density and turn a conductive sample into an insulator.

ContributorsKormondy, Kristy J. (Author) / Posadas, Agham B. (Author) / Ngo, Thong Q. (Author) / Lu, Sirong (Author) / Goble, Nicholas (Author) / Jordan-Sweet, Jean (Author) / Gao, Xuan P. A. (Author) / Smith, David (Author) / McCartney, Martha (Author) / Ekerdt, John G. (Author) / Demkov, Alexander A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-07
129669-Thumbnail Image.png
Description

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g L-1 DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g L-1 DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g L-1 and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g L-1), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg L-1 d(-1) was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

ContributorsWang, Junfeng (Author) / Sommerfeld, Milton (Author) / Lu, Congming (Author) / Hu, Qiang (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-30
129668-Thumbnail Image.png
Description

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the micro algal astaxanthin industry.

ContributorsHan, Danxiang (Author) / Li, Yantao (Author) / Hu, Qiang (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-30
129636-Thumbnail Image.png
Description

This paper reports the molecular beam epitaxial growth and characterization of high-reflectivity and broad-bandwidth distributed Bragg reflectors (DBRs) made of ZnTe/GaSb quarter-wavelength (lambda/4) layers for optoelectronic applications in the midwave infrared spectral range (2-5 mu m). A series of ZnTe/GaSb DBRs has been successfully grown on GaSb (001) substrates using

This paper reports the molecular beam epitaxial growth and characterization of high-reflectivity and broad-bandwidth distributed Bragg reflectors (DBRs) made of ZnTe/GaSb quarter-wavelength (lambda/4) layers for optoelectronic applications in the midwave infrared spectral range (2-5 mu m). A series of ZnTe/GaSb DBRs has been successfully grown on GaSb (001) substrates using molecular beam epitaxy (MBE). During the MBE growth, a temperature ramp was applied to the initial growth of GaSb layers on ZnTe to protect the ZnTe underneath from damage due to thermal evaporation. Post-growth characterization using high-resolution x-ray diffraction, atomic force microscopy, and transmission electron microscopy reveals smooth surface morphology, low defect density, and coherent interfaces. Reflectance spectroscopy results show that a DBR sample of seven lambda/4 pairs has a peak reflectance as high as 99.0% centered at 2.56 mu m with a bandwidth of 517 nm.

ContributorsFan, Jin (Author) / Liu, Xinyu (Author) / Ouyang, Lu (Author) / Pimpinella, Richard E. (Author) / Dobrowolska, Margaret (Author) / Furdyna, Jacek K. (Author) / Smith, David (Author) / Zhang, Yong-Hang (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-28
129634-Thumbnail Image.png
Description

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species.

Conclusion: This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.

ContributorsWei, Li (Author) / Xin, Yi (Author) / Wang, Dongmei (Author) / Jing, Xiaoyan (Author) / Zhou, Qian (Author) / Su, Xiaoquan (Author) / Jia, Jing (Author) / Ning, Kang (Author) / Chen, Feng (Author) / Hu, Qiang (Author) / Xu, Jian (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-05
128908-Thumbnail Image.png
Description

N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC

N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30–35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2–3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30–35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5–4.8) and Chihuahuan (Q10 of 2.4–2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.

ContributorsZhou, Xiaobing (Author) / Smith, Hilda (Author) / Girardo Silva, Ana Maria (Author) / Belnap, Jayne (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-24