This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
Description

Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic

Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies.

ContributorsYu, Xiaobo (Author) / Bian, Xiaofang (Author) / Throop, Andrea (Author) / Song, Lusheng (Author) / del Moral, Lerys (Author) / Park, Jin (Author) / Seiler, Catherine (Author) / Fiacco, Michael (Author) / Steel, Jason (Author) / Hunter, Preston (Author) / Saul, Justin (Author) / Wang, Jie (Author) / Qiu, Ji (Author) / Pipas, James M. (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2013-11-30
127868-Thumbnail Image.png
Description

Rationale: Cell-free protein microarrays display naturally-folded proteins based on just-in-time in situ synthesis, and have made important contributions to basic and translational research. However, the risk of spot-to-spot cross-talk from protein diffusion during expression has limited the feature density of these arrays.

Methods: In this work, we developed the Multiplexed Nucleic

Rationale: Cell-free protein microarrays display naturally-folded proteins based on just-in-time in situ synthesis, and have made important contributions to basic and translational research. However, the risk of spot-to-spot cross-talk from protein diffusion during expression has limited the feature density of these arrays.

Methods: In this work, we developed the Multiplexed Nucleic Acid Programmable Protein Array (M-NAPPA), which significantly increases the number of displayed proteins by multiplexing as many as five different gene plasmids within a printed spot.

Results: Even when proteins of different sizes were displayed within the same feature, they were readily detected using protein-specific antibodies. Protein-protein interactions and serological antibody assays using human viral proteome microarrays demonstrated that comparable hits were detected by M-NAPPA and non-multiplexed NAPPA arrays. An ultra-high density proteome microarray displaying > 16k proteins on a single microscope slide was produced by combining M-NAPPA with a photolithography-based silicon nano-well platform. Finally, four new tuberculosis-related antigens in guinea pigs vaccinated with Bacillus Calmette-Guerin (BCG) were identified with M-NAPPA and validated with ELISA.

Conclusion: All data demonstrate that multiplexing features on a protein microarray offer a cost-effective fabrication approach and have the potential to facilitate high throughput translational research.

ContributorsYu, Xiaobo (Author) / Song, Lusheng (Author) / Petritis, Brianne (Author) / Bian, Xiaofang (Author) / Wang, Haoyu (Author) / Viloria, Jennifer (Author) / Park, Jin (Author) / Bui, Hoang (Author) / Li, Han (Author) / Wang, Jie (Author) / Liu, Lei (Author) / Yang, Liuhui (Author) / Duan, Hu (Author) / McMurray, David N. (Author) / Achkar, Jacqueline M. (Author) / Magee, Mitch (Author) / Qiu, Ji (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2017-09-20
129310-Thumbnail Image.png
Description

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound IgG. Of these, 741 antigens were selected and probed with an independent set of ovarian cancer sera (n = 60 cases/60 controls). Twelve potential autoantigens were identified with sensitivities ranging from 13 to 22% at >93% specificity. These were retested using a Luminex bead array using 60 cases and 60 controls, with sensitivities ranging from 0 to 31.7% at 95% specificity. Three AAb (p53, PTPRA, and PTGFR) had area under the curve (AUC) levels >60% (p < 0.01), with the partial AUC (SPAUC) over 5 times greater than for a nondiscriminating test (p < 0.01). Using a panel of the top three AAb (p53, PTPRA, and PTGFR), if at least two AAb were positive, then the sensitivity was 23.3% at 98.3% specificity. AAb to at least one of these top three antigens were also detected in 7/20 sera (35%) of patients with low CA 125 levels and 0/15 controls. AAb to p53, PTPRA, and PTGFR are potential biomarkers for the early detection of ovarian cancer.

ContributorsAnderson, Karen (Author) / Cramer, Daniel W. (Author) / Sibani, Sahar (Author) / Wallstrom, Garrick (Author) / Wong, Jessica (Author) / Park, Jin (Author) / Qiu, Ji (Author) / Vitonis, Allison (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2015-01-01
128816-Thumbnail Image.png
Description

To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results

To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results and clinical outcomes. We report quality control outcomes and nucleic acid yields of our RCC submissions (N=16) to The Cancer Genome Atlas (TCGA) project, as well as newer discovery platforms, by describing mass spectrometry analysis of albumin oxidation in plasma and 6 ChIP sequencing libraries generated from nephrectomy specimens after histone H3 lysine 36 trimethylation (H3K36me3) immunoprecipitation. From June 1, 2010, through January 1, 2013, we enrolled 328 patients with RCC. Our mean (SD) TCGA RNA integrity numbers (RINs) were 8.1 (0.8) for papillary RCC, with a 12.5% overall rate of sample disqualification for RIN <7. Banked plasma had significantly less albumin oxidation (by mass spectrometry analysis) than plasma kept at 25°C (P<.001). For ChIP sequencing, the FastQC score for average read quality was at least 30 for 91% to 95% of paired-end reads. In parallel, we analyzed frozen tissue by RNA sequencing; after genome alignment, only 0.2% to 0.4% of total reads failed the default quality check steps of Bowtie2, which was comparable to the disqualification ratio (0.1%) of the 786-O RCC cell line that was prepared under optimal RNA isolation conditions. The overall correlation coefficients for gene expression between Mayo Clinic vs TCGA tissues ranged from 0.75 to 0.82. These data support the generation of high-quality nucleic acids for genomic analyses from banked RCC. Importantly, the protocol does not interfere with routine clinical care. Collections over defined time points during disease treatment further enhance collaborative efforts to integrate genomic information with outcomes.

ContributorsHo, Thai H. (Author) / Nunez Nateras, Rafael (Author) / Yan, Huihuang (Author) / Park, Jin (Author) / Jensen, Sally (Author) / Borges, Chad (Author) / Lee, Jeong Heon (Author) / Champion, Mia D. (Author) / Tibes, Raoul (Author) / Bryce, Alan H. (Author) / Carballido, Estrella M. (Author) / Todd, Mark A. (Author) / Joseph, Richard W. (Author) / Wong, William W. (Author) / Parker, Alexander S. (Author) / Stanton, Melissa L. (Author) / Castle, Erik P. (Author) / Biodesign Institute (Contributor)
Created2015-07-16
128886-Thumbnail Image.png
Description

Species turnover or β diversity is a conceptually attractive surrogate for conservation planning. However, there has been only 1 attempt to determine how well sites selected to maximize β diversity represent species, and that test was done at a scale too coarse (2,500 km2 sites) to inform most conservation decisions.

Species turnover or β diversity is a conceptually attractive surrogate for conservation planning. However, there has been only 1 attempt to determine how well sites selected to maximize β diversity represent species, and that test was done at a scale too coarse (2,500 km2 sites) to inform most conservation decisions. We used 8 plant datasets, 3 bird datasets, and 1 mammal dataset to evaluate whether sites selected to span β diversity will efficiently represent species at finer scale (sites sizes < 1 ha to 625 km2). We used ordinations to characterize dissimilarity in species assemblages (β diversity) among plots (inventory data) or among grid cells (atlas data). We then selected sites to maximize β diversity and used the Species Accumulation Index, SAI, to evaluate how efficiently the surrogate (selecting sites for maximum β diversity) represented species in the same taxon. Across all 12 datasets, sites selected for maximum β diversity represented species with a median efficiency of 24% (i.e., the surrogate was 24% more effective than random selection of sites), and an interquartile range of 4% to 41% efficiency. β diversity was a better surrogate for bird datasets than for plant datasets, and for atlas datasets with 10-km to 14-km grid cells than for atlas datasets with 25-km grid cells. We conclude that β diversity is more than a mere descriptor of how species are distributed on the landscape; in particular β diversity might be useful to maximize the complementarity of a set of sites. Because we tested only within-taxon surrogacy, our results do not prove that β diversity is useful for conservation planning. But our results do justify further investigation to identify the circumstances in which β diversity performs well, and to evaluate it as a cross-taxon surrogate.

Created2016-03-04
128625-Thumbnail Image.png
Description

A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of

A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of rarity-weighted richness (HRR)–sites that efficiently represent species–for birds across EU countries, and to explore whether HRR are well represented by the Natura 2000 network. Natura 2000 is an evolving network of PAs that seeks to conserve biodiversity through the persistence of the most patrimonial species and habitats across Europe. This network includes Sites of Community Importance (SCI) and Special Areas of Conservation (SAC), where the latter regulated the designation of Special Protected Areas (SPA). Distribution maps for 416 bird species and complementarity-based approaches were used to map geographical patterns of rarity-weighted richness (RWR) and HRR for birds. We used species accumulation index to evaluate whether RWR was efficient surrogates to identify HRRs for birds. The results of our analysis support the proposition that prioritizing sites in order of RWR is a reliable way to identify sites that efficiently represent birds. HRRs were concentrated in the Mediterranean Basin and alpine and boreal biogeographical regions of northern Europe. The cells with high RWR values did not correspond to cells where Natura 2000 was present. We suggest that patterns of RWR could become a focus for conservation biogeography. Our analysis demonstrates that identifying HRR is a robust approach for prioritizing management actions, and reveals the need for more conservation actions, especially on HRR.

Created2017-04-05
129540-Thumbnail Image.png
Description

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the

The role of ambiguity tolerance in career decision making was examined in a sample of college students (n = 275). Three hypotheses were proposed regarding the direct prediction of ambiguity tolerance on career indecision, the indirect prediction of ambiguity tolerance on career indecision through environmental and self explorations, and the moderation effect of ambiguity tolerance on the link of environmental and self explorations with career indecision. Results supported the significance of ambiguity tolerance with respect to career indecision, finding that it directly predicted general indecisiveness, dysfunctional beliefs, lack of information, and inconsistent information, and moderated the prediction of environmental exploration on inconsistent information. The implications of this study are discussed and suggestions for future research are provided.

ContributorsXu, Hui (Author) / Tracey, Terence (Author) / College of Integrative Sciences and Arts (Contributor)
Created2014-08-01
127992-Thumbnail Image.png
Description

The mission of the DNASU Plasmid Repository is to accelerate research by providing high-quality, annotated plasmid samples and online plasmid resources to the research community through the curated DNASU database, website and repository (http://dnasu.asu.edu or http://dnasu.org). The collection includes plasmids from grant-funded, high-throughput cloning projects performed in our laboratory, plasmids

The mission of the DNASU Plasmid Repository is to accelerate research by providing high-quality, annotated plasmid samples and online plasmid resources to the research community through the curated DNASU database, website and repository (http://dnasu.asu.edu or http://dnasu.org). The collection includes plasmids from grant-funded, high-throughput cloning projects performed in our laboratory, plasmids from external researchers, and large collections from consortia such as the ORFeome Collaboration and the NIGMS-funded Protein Structure Initiative: Biology (PSI:Biology). Through DNASU, researchers can search for and access detailed information about each plasmid such as the full length gene insert sequence, vector information, associated publications, and links to external resources that provide additional protein annotations and experimental protocols. Plasmids can be requested directly through the DNASU website. DNASU and the PSI:Biology-Materials Repositories were previously described in the 2010 NAR Database Issue (Cormier, C.Y., Mohr, S.E., Zuo, D., Hu, Y., Rolfs, A., Kramer, J., Taycher, E., Kelley, F., Fiacco, M., Turnbull, G. et al. (2010) Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res., 38, D743–D749.). In this update we will describe the plasmid collection and highlight the new features in the website redesign, including new browse/search options, plasmid annotations and a dynamic vector mapping feature that was developed in collaboration with LabGenius. Overall, these plasmid resources continue to enable research with the goal of elucidating the role of proteins in both normal biological processes and disease.

ContributorsSeiler, Catherine (Author) / Park, Jin (Author) / Sharma, Amit Arunkumar (Author) / Hunter, Preston (Author) / Surapaneni, Padmini (Author) / Sedillo, Casey (Author) / Field, James (Author) / Algar, Rhys (Author) / Price, Andrea (Author) / Steel, Jason (Author) / Throop, Andrea (Author) / Fiacco, Michael (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2013-11-12
127963-Thumbnail Image.png
Description

Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity

Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012.

A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse (Chaetodipus penicillatus) which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey’s pocket mouse (C. baileyi) and white-throated woodrat (Neotoma albigula), had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

ContributorsSwitalski, Aaron (Author) / Bateman, Heather (Author) / College of Integrative Sciences and Arts (Contributor)
Created2017-11-10