This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 801 - 804 of 804
Filtering by

Clear all filters

129133-Thumbnail Image.png
Description

Sustainability theory can help achieve desirable social-ecological states by generalizing lessons across contexts and improving the design of sustainability interventions. To accomplish these goals, we argue that theory in sustainability science must (1) explain the emergence and persistence of social-ecological states, (2) account for endogenous cultural change, (3) incorporate cooperation

Sustainability theory can help achieve desirable social-ecological states by generalizing lessons across contexts and improving the design of sustainability interventions. To accomplish these goals, we argue that theory in sustainability science must (1) explain the emergence and persistence of social-ecological states, (2) account for endogenous cultural change, (3) incorporate cooperation dynamics, and (4) address the complexities of multilevel social-ecological interactions. We suggest that cultural evolutionary theory broadly, and cultural multilevel selection in particular, can improve on these fronts. We outline a multilevel evolutionary framework for describing social-ecological change and detail how multilevel cooperative dynamics can determine outcomes in environmental dilemmas. We show how this framework complements existing sustainability frameworks with a description of the emergence and persistence of sustainable institutions and behavior, a means to generalize causal patterns across social-ecological contexts, and a heuristic for designing and evaluating effective sustainability interventions. We support these assertions with case examples from developed and developing countries in which we track cooperative change at multiple levels of social organization as they impact social-ecological outcomes. Finally, we make suggestions for further theoretical development, empirical testing, and application.

ContributorsWaring, Timothy M. (Author) / Kline, Michelle (Author) / Brooks, Jeremy S. (Author) / Goff, Sandra H. (Author) / Gowdy, John (Author) / Janssen, Marco (Author) / Smaldino, Paul E. (Author) / Jacquet, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-30
129130-Thumbnail Image.png
Description

We present a case for using Global Community Innovation Platforms (GCIPs), an approach to improve innovation and knowledge exchange in international scientific communities through a common and open online infrastructure. We highlight the value of GCIPs by focusing on recent efforts targeting the ecological sciences, where GCIPs are of high

We present a case for using Global Community Innovation Platforms (GCIPs), an approach to improve innovation and knowledge exchange in international scientific communities through a common and open online infrastructure. We highlight the value of GCIPs by focusing on recent efforts targeting the ecological sciences, where GCIPs are of high relevance given the urgent need for interdisciplinary, geographical, and cross-sector collaboration to cope with growing challenges to the environment as well as the scientific community itself. Amidst the emergence of new international institutions, organizations, and meetings, GCIPs provide a stable international infrastructure for rapid and long-term coordination that can be accessed by any individual. This accessibility can be especially important for researchers early in their careers. Recent examples of early-career GCIPs complement an array of existing options for early-career scientists to improve skill sets, increase academic and social impact, and broaden career opportunities. We provide a number of examples of existing early-career initiatives that incorporate elements from the GCIPs approach, and highlight an in-depth case study from the ecological sciences: the International Network of Next-Generation Ecologists (INNGE), initiated in 2010 with support from the International Association for Ecology and 20 member institutions from six continents.

ContributorsJorgensen, Peter Sogaard (Author) / Barraquand, Frederic (Author) / Bonhomme, Vincent (Author) / Curran, Timothy J. (Author) / Cieraad, Ellen (Author) / Ezard, Thomas G. (Author) / Gherardi Arbizu, Laureano (Author) / Hayes, R. Andrew (Author) / Poisot, Timothee (Author) / Salguero-Gomez, Roberto (Author) / DeSoto, Lucia (Author) / Swartz, Brian (Author) / Talbot, Jennifer M. (Author) / Wee, Brian (Author) / Zimmerman, Naupaka (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-01
129129-Thumbnail Image.png
Description

Water availability is the major limiting factor of the functioning of deserts and grasslands and is going to be severely modified by climate change. Field manipulative experiments of precipitation represent the best way to explore cause-effect relationships between water availability and ecosystem functioning. However, there is a limited number of

Water availability is the major limiting factor of the functioning of deserts and grasslands and is going to be severely modified by climate change. Field manipulative experiments of precipitation represent the best way to explore cause-effect relationships between water availability and ecosystem functioning. However, there is a limited number of that type of studies because of logistic and cost limitations. Here, we report on a new system that alters precipitation for experimental plots from 80% reduction to 80% increase relative to ambient, that is low cost, and is fully solar powered. This two-part system consists of a rainout shelter that intercepts water and sends it to a temporary storage tank, from where a solar-powered pump then sends the water to sprinklers located in opposite corners of an irrigated plot. We tested this automated system for 5 levels of rainfall, reduction-irrigation (50–80%) and controls with N = 3. The system showed high reduction/irrigation accuracy and small effect on temperature and photosynthetically active radiation. System average cost was $228 USD per module of 2.5 m by 2.5 m and required low maintenance.

ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02
129126-Thumbnail Image.png
Description

We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, nðt0Þ < 1 × 10−20 cm−3, which is a “primordial” analog of the Parker

We explore some particle physics implications of the growing evidence for a helical primordial magnetic field (PMF). From the interactions of magnetic monopoles and the PMF, we derive an upper bound on the monopole number density, nðt0Þ < 1 × 10−20 cm−3, which is a “primordial” analog of the Parker bound for the survival of galactic magnetic fields. Our bound is weaker than existing constraints, but it is derived under independent assumptions. We also show how improved measurements of the PMF at different redshifts can lead to further constraints on magnetic monopoles. Axions interact with the PMF due to the gaγφE · B=4π interaction. Including the effects of the cosmological plasma, we find that the helicity of the PMF is a source for the axion field. Although the magnitude of the source is small for the PMF, it could potentially be of interest in astrophysical environments. Earlier derived constraints from the resonant conversion of cosmic microwave background photons into axions lead to gaγ ≲ 10−9 GeV−1 for the suggested PMF strength ∼10−14 G and coherence length ∼10 Mpc. Finally, we apply constraints on the neutrino magnetic dipole moment that arise from requiring successful big bang nucleosynthesis in the presence of a PMF, and we find μν ≲ 10−16 μB.

ContributorsLong, Andrew J. (Author) / Vachaspati, Tanmay (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-05-20