This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 24
Filtering by

Clear all filters

Description

The glucose metabolism level reflects cell proliferative status. A polymeric glucose ratiometric sensor comprising poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMAETMA) was synthesized. Cellular internalization and glucose response of the polymer within HeLa cells were investigated.

ContributorsZhang, Liqiang (Author) / Su, Fengyu (Author) / Buizer, Sean (Author) / Kong, Xiangxing (Author) / Lee, Fred (Author) / Day, Kevin (Author) / Tian, Yanqing (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2014-05-07
128616-Thumbnail Image.png
Description

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants

Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants (17 men, 3 women, aged 35–65) continuously for 64.4±26.2 (range: 13.9 to 102.0) consecutive days. Cardiometabolic risk biomarkers and health-related quality of life metrics were assessed at baseline. Periodograms were constructed to determine patterns emergent from the accelerometer data. Periodicity strength was calculated using circular autocorrelations for time-lagged windows. The most notable periodicity was at 24 h, indicating a circadian rest-activity cycle; however, its strength varied significantly across participants. Periodicity strength was most consistently associated with LDL-cholesterol (r’s = 0.40–0.79, P’s < 0.05) and triglycerides (r’s = 0.68–0.86, P’s < 0.05) but also associated with hs-CRP and health-related quality of life, even after adjusting for demographics and self-rated physical activity and insomnia symptoms. Our framework demonstrates a new method for characterizing behavior patterns longitudinally which captures relationships between 24 h accelerometry data and health outcomes.

ContributorsBuman, Matthew (Author) / Hu, Feiyan (Author) / Newman, Eamonn (Author) / Smeaton, Alan F. (Author) / Epstein, Dana R. (Author) / College of Health Solutions (Contributor)
Created2016-01-04
128596-Thumbnail Image.png
Description

Background: Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older adults; however, the availability of sustainable, community-based FPPs is limited.

Methods: We conducted a 24-week quasi-experimental study to evaluate the efficacy

Background: Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older adults; however, the availability of sustainable, community-based FPPs is limited.

Methods: We conducted a 24-week quasi-experimental study to evaluate the efficacy of a community-based, multifactorial FPP [Stay in Balance (SIB)] on dynamic and functional balance and muscular strength. The SIB program was delivered by allied health students and included a health education program focused on fall risk factors and a progressive exercise program emphasizing lower-extremity strength and balance. All participants initially received the 12-week SIB program, and participants were non-randomly assigned at baseline to either continue the SIB exercise program at home or as a center-based program for an additional 12 weeks. Adults aged 60 and older (n = 69) who were at-risk of falling (fall history or 2+ fall risk factors) were recruited to participate. Mixed effects repeated measures using Statistical Application Software Proc Mixed were used to examine group, time, and group-by-time effects on dynamic balance (8-Foot Up and Go), functional balance (Berg Balance Scale), and muscular strength (30 s chair stands and 30 s arm curls). Non-normally distributed outcome variables were log-transformed.

Results: After adjusting for age, gender, and body mass index, 8-Foot Up and Go scores, improved significantly over time [F(2,173) = 8.92, p = 0.0; T0 − T2 diff = 1.2 (1.0)]. Berg Balance Scores [F(2,173) = 29.0, p < 0.0001; T0 − T2 diff = 4.96 (0.72)], chair stands [F(2,171) = 10.17, p < 0.0001; T0 − T2 diff = 3.1 (0.7)], and arm curls [F(2,171) = 12.7, p < 0.02; T0 − T2 diff = 2.7 (0.6)] also all improved significantly over time. There were no significant group-by-time effects observed for any of the outcomes.

Conclusion: The SIB program improved dynamic and functional balance and muscular strength in older adults at-risk for falling. Our findings indicate continuing home-based strength and balance exercises at home after completion of a center-based FPP program may be an effective and feasible way to maintain improvements in balance and strength parameters.

ContributorsDer Ananian, Cheryl (Author) / Mitros, Melanie (Author) / Buman, Matthew (Author) / College of Health Solutions (Contributor)
Created2017-02-27
127883-Thumbnail Image.png
Description

Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge

Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge to implement. Here, we demonstrate a rapid, simple, indiscriminate, and minimally perturbing cell patterning method using a laser fabricated polymer stencil. The stencil fabrication process requires no stencil-substrate alignment, and is readily adaptable to various substrate geometries and experiments.

ContributorsMessner, Jacob J. (Author) / Glenn, Honor (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-12-19
127853-Thumbnail Image.png
Description

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of

Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field.

ContributorsKelbauskas, Laimonas (Author) / Shetty, Rishabh Manoj (Author) / Cao, Bin (Author) / Wang, Kuo-Chen (Author) / Smith, Dean (Author) / Wang, Hong (Author) / Chao, Shi-Hui (Author) / Gangaraju, Sandhya (Author) / Ashcroft, Brian (Author) / Kritzer, Margaret (Author) / Glenn, Honor (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2017-12-06
128861-Thumbnail Image.png
Description

Mobile devices are a promising channel for delivering just-in-time guidance and support for improving key daily health behaviors. Despite an explosion of mobile phone applications aimed at physical activity and other health behaviors, few have been based on theoretically derived constructs and empirical evidence. Eighty adults ages 45 years and

Mobile devices are a promising channel for delivering just-in-time guidance and support for improving key daily health behaviors. Despite an explosion of mobile phone applications aimed at physical activity and other health behaviors, few have been based on theoretically derived constructs and empirical evidence. Eighty adults ages 45 years and older who were insufficiently physically active, engaged in prolonged daily sitting, and were new to smartphone technology, participated in iterative design development and feasibility testing of three daily activity smartphone applications based on motivational frames drawn from behavioral science theory and evidence. An “analytically” framed custom application focused on personalized goal setting, self-monitoring, and active problem solving around barriers to behavior change. A “socially” framed custom application focused on social comparisons, norms, and support.

An “affectively” framed custom application focused on operant conditioning principles of reinforcement scheduling and emotional transference to an avatar, whose movements and behaviors reflected the physical activity and sedentary levels of the user. To explore the applications' initial efficacy in changing regular physical activity and leisure-time sitting, behavioral changes were assessed across eight weeks in 68 participants using the CHAMPS physical activity questionnaire and the Australian sedentary behavior questionnaire. User acceptability of and satisfaction with the applications was explored via a post-intervention user survey. The results indicated that the three applications were sufficiently robust to significantly improve regular moderate-to-vigorous intensity physical activity and decrease leisure-time sitting during the 8-week behavioral adoption period. Acceptability of the applications was confirmed in the post-intervention surveys for this sample of midlife and older adults new to smartphone technology. Preliminary data exploring sustained use of the applications across a longer time period yielded promising results. The results support further systematic investigation of the efficacy of the applications for changing these key health-promoting behaviors.

ContributorsKing, Abby C. (Author) / Hekler, Eric (Author) / Greico, Lauren A. (Author) / Winter, Sandra J. (Author) / Sheats, Jylana L. (Author) / Buman, Matthew (Author) / Banerjee, Banny (Author) / Robinson, Thomas N. (Author) / Cirimele, Jesse (Author) / College of Health Solutions (Contributor)
Created2013-04-25
128823-Thumbnail Image.png
Description

With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an

With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH2) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.

ContributorsSu, Fengyu (Author) / Alam, Ruhaniyah (Author) / Mei, Qian (Author) / Tian, Yanqing (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2011-09-06
128810-Thumbnail Image.png
Description

Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar

Hydrophobic platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) was physically incorporated into micelles formed from poly(ε-caprolactone)-block-poly(ethylene glycol) to enable the application of PtTFPP in aqueous solution. Micelles were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM) to show an average diameter of about 140 nm. PtTFPP showed higher quantum efficiency in micellar solution than in tetrahydrofuran (THF) and dichloromethane (CH2Cl2). PtTFPP in micelles also exhibited higher photostability than that of PtTFPP suspended in water. PtTFPP in micelles exhibited good oxygen sensitivity and response time. This study provided an efficient approach to enable the application of hydrophobic oxygen sensors in a biological environment.

ContributorsSu, Fengyu (Author) / Alam, Ruhaniyah (Author) / Mei, Qian (Author) / Tian, Yanqing (Author) / Youngbull, Cody (Author) / Johnson, Roger (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2012-03-22
129002-Thumbnail Image.png
Description

Background: The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches.

Background: The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications.

Results: We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis.

Conclusions: MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.

ContributorsGao, Weimin (Author) / Navarroli, Dena (Author) / Naimark, Jared (Author) / Zhang, Weiwen (Author) / Chao, Shih-hui (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-01-09
128903-Thumbnail Image.png
Description

Core-shell microgels containing sensors/dyes in a matrix were fabricated by two-stage free radical precipitation polymerization method for ratiometric sensing/imaging. The microgels composing of poly(N-isopropylacrylamide) (PNIPAm) shell exhibits a low critical solution temperature (LCST), underwent an entropically driven transition from a swollen state to a deswollen state, which exhibit a hydrodynamic

Core-shell microgels containing sensors/dyes in a matrix were fabricated by two-stage free radical precipitation polymerization method for ratiometric sensing/imaging. The microgels composing of poly(N-isopropylacrylamide) (PNIPAm) shell exhibits a low critical solution temperature (LCST), underwent an entropically driven transition from a swollen state to a deswollen state, which exhibit a hydrodynamic radius of ∼450 nm at 25°C (in vitro) and ∼190 nm at 37°C (in vivo). The microgel’s ability of escaping from lysosome into cytosol makes the microgel be a potential candidate for cytosolic delivery of sensors/probes. Non-invasive imaging/sensing in Antigen-presenting cells (APCs) was feasible by monitoring the changes of fluorescence intensity ratios. Thus, these biocompatible microgels-based imaging/sensing agents may be expected to expand current molecular imaging/sensing techniques into methods applicable to studies in vivo, which could further drive APC-based treatments.

ContributorsZhou, Xianfeng (Author) / Su, Fengyu (Author) / Tian, Yanqing (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2014-02-04