This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 24
Filtering by

Clear all filters

Description

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies.

ContributorsMoya, Noel (Author) / Cutts, Joshua (Author) / Gaasterland, Terry (Author) / Willert, Karl (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-09
127902-Thumbnail Image.png
Description

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of a clinically diagnosed AD patient [ASUi003-A] and a non-demented control (NDC) patient [ASUi004-A] homozygous for the APOE4 risk allele. These hiPSCs maintained their original genotype, expressed pluripotency markers, exhibited a normal karyotype, and retained the ability to differentiate into cells representative of the three germ layers.

ContributorsBrookhouser, Nicholas (Author) / Zhang, Ping (Author) / Caselli, Richard (Author) / Kim, Jean J. (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-10
127874-Thumbnail Image.png
Description

The lack of lipidome analytical tools has limited our ability to gain new knowledge about lipid metabolism in microalgae, especially for membrane glycerolipids. An electrospray ionization mass spectrometry-based lipidomics method was developed for Nannochloropsis oceanica IMET1, which resolved 41 membrane glycerolipids molecular species belonging to eight classes. Changes in membrane

The lack of lipidome analytical tools has limited our ability to gain new knowledge about lipid metabolism in microalgae, especially for membrane glycerolipids. An electrospray ionization mass spectrometry-based lipidomics method was developed for Nannochloropsis oceanica IMET1, which resolved 41 membrane glycerolipids molecular species belonging to eight classes. Changes in membrane glycerolipids under nitrogen deprivation and high-light (HL) conditions were uncovered. The results showed that the amount of plastidial membrane lipids including monogalactosyldiacylglycerol, phosphatidylglycerol, and the extraplastidic lipids diacylglyceryl-O-4′-(N, N, N,-trimethyl) homoserine and phosphatidylcholine decreased drastically under HL and nitrogen deprivation stresses. Algal cells accumulated considerably more digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerols under stresses. The genes encoding enzymes responsible for biosynthesis, modification and degradation of glycerolipids were identified by mining a time-course global RNA-seq data set. It suggested that reduction in lipid contents under nitrogen deprivation is not attributable to the retarded biosynthesis processes, at least at the gene expression level, as most genes involved in their biosynthesis were unaffected by nitrogen supply, yet several genes were significantly up-regulated. Additionally, a conceptual eicosapentaenoic acid (EPA) biosynthesis network is proposed based on the lipidomic and transcriptomic data, which underlined import of EPA from cytosolic glycerolipids to the plastid for synthesizing EPA-containing chloroplast membrane lipids.

ContributorsHan, Danxiang (Author) / Jia, Jing (Author) / Li, Jing (Author) / Sommerfeld, Milton (Author) / Xu, Jian (Author) / Hu, Qiang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-04
127863-Thumbnail Image.png
Description

Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising

Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs) demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages.

ContributorsLou, Chih-Hong (Author) / Dumdie, Jennifer (Author) / Goetz, Alexandra (Author) / Shum, Eleen Y. (Author) / Brafman, David (Author) / Liao, Xiaoyan (Author) / Mora-Castilla, Sergio (Author) / Ramaiah, Madhuvanthi (Author) / Cook-Andersen, Heidi (Author) / Laurent, Louise (Author) / Wilkinson, Miles F. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-06-14
128999-Thumbnail Image.png
Description

Background: A limitation of traditional outcome studies from behavioral interventions is the lack of attention given to evaluating the influence of moderating variables. This study examined possible moderation effect of baseline activity levels on physical activity change as a result of the Ready for Recess intervention.

Methods: Ready for Recess (August

Background: A limitation of traditional outcome studies from behavioral interventions is the lack of attention given to evaluating the influence of moderating variables. This study examined possible moderation effect of baseline activity levels on physical activity change as a result of the Ready for Recess intervention.

Methods: Ready for Recess (August 2009-September 2010) was a controlled trial with twelve schools randomly assigned to one of four conditions: control group, staff supervision, equipment availability, and the combination of staff supervision and equipment availability. A total of 393 children (181 boys and 212 girls) from grades 3 through 6 (8–11 years old) were asked to wear an Actigraph monitor during school time on 4–5 days of the week. Assessments were conducted at baseline (before intervention) and post intervention (after intervention).

Results: Initial MVPA moderated the effect of Staff supervision (β = −0.47%; p < .05), but not Equipment alone and Staff + Equipment (p > .05). Participants in the Staff condition that were 1 standard deviation (SD) below the mean for baseline MVPA (classified as “low active”) had lower MVPA levels at post-intervention when compared with their low active peers in the control condition (Meandiff = −10.8 ± 2.9%; p = .005). High active individuals (+1SD above the mean) in the Equipment treatment also had lower MVPA values at post-intervention when compared with their highly active peers in the control group (Meandiff = −9.5 ± 2.9%; p = .009).

Conclusions: These results indicate that changes in MVPA levels at post-intervention were reduced in highly active participants when recess staff supervision was provided. In this study, initial MVPA moderated the effect of Staff supervision on children’s MVPA after 6 months of intervention. Staff training should include how to work with inactive youth but also how to assure that active children remain active.

ContributorsSaint-Maurice, Pedro F. (Author) / Welk, Gregory J. (Author) / Russell, Daniel W. (Author) / Huberty, Jennifer (Author) / College of Health Solutions (Contributor)
Created2014-02-01
128982-Thumbnail Image.png
Description

Background: In the United States, approximately one in 110 pregnancies end in stillbirth affecting more than 26,000 women annually. Women experiencing stillbirth have a threefold greater risk of developing depressive symptoms compared to women experiencing live birth. Depression contributes negatively to health outcomes for both mothers and babies subsequent to stillbirth.

Background: In the United States, approximately one in 110 pregnancies end in stillbirth affecting more than 26,000 women annually. Women experiencing stillbirth have a threefold greater risk of developing depressive symptoms compared to women experiencing live birth. Depression contributes negatively to health outcomes for both mothers and babies subsequent to stillbirth. Physical activity may improve depression in these women, however, little is known about acceptable physical activity interventions for women after stillbirth. This is the purpose of this descriptive exploratory study.

Methods: Eligible women were between ages 19 and 45, and experienced stillbirth within one year of the study. An online survey was used to ask questions related to 1) pregnancy and family information (i.e., time since stillbirth, weight gain during pregnancy, number of other children) 2) physical activity participation, 3) depressive symptomatology, and 4) demographics.

Results: One hundred seventy-five women participated in the study (M age = 31.26 ± 5.52). Women reported participating in regular physical activity (at least 150 minutes of moderate activity weekly) before (60%) and during (47%) their pregnancy, as well as after their stillbirth (61%). Only 37% were currently meeting physical activity recommendations. Approximately 88% reported depression (i.e., score of >10 on depression scale). When asked how women cope with depression, anxiety, or grief, 38% said physical activity. Of those that reported using physical activity to cope after stillbirth, they did so to help with depression (58%), weight loss (55%), and better overall physical health (52%). To cope with stillbirth, women used walking (67%), followed by jogging (35%), and yoga (23%). Women who participated in physical activity after stillbirth reported significantly lower depressive symptoms (M = 15.10, SD = 5.32) compared to women who did not participate in physical activity (M = 18.06, SD = 5.57; t = -3.45, p = .001).

Conclusions: Physical activity may serve as a unique opportunity to help women cope with the multiple mental sequelae after stillbirth. This study provides data to inform healthcare providers about the potential role of physical activity in bereavement and recovery for women who have experienced stillbirth. Additional research is necessary in this vulnerable population.

ContributorsHuberty, Jennifer (Author) / Leiferman, Jenn A. (Author) / Gold, Katherine J. (Author) / Rowedder, Lacey (Author) / Cacciatore, Joanne (Author) / Bonds McClain, Darya (Contributor) / College of Health Solutions (Contributor)
Created2014-11-29
128980-Thumbnail Image.png
Description

Background: The transition to parenthood is consistently associated with declines in physical activity. In particular, working parents are at risk for inactivity, but research exploring physical activity barriers and facilitators in this population has been scarce. The purpose of this study was to qualitatively examine perceptions of physical activity among working

Background: The transition to parenthood is consistently associated with declines in physical activity. In particular, working parents are at risk for inactivity, but research exploring physical activity barriers and facilitators in this population has been scarce. The purpose of this study was to qualitatively examine perceptions of physical activity among working parents.

Methods: Working mothers (n = 13) and fathers (n = 12) were recruited to participate in one of four focus group sessions and discuss physical activity barriers and facilitators. Data were analyzed using immersion/crystallization in NVivo 10.

Results: Major themes for barriers included family responsibilities, guilt, lack of support, scheduling constraints, and work. Major themes for facilitators included being active with children or during children’s activities, being a role model for children, making time/prioritizing, benefits to health and family, and having support available. Several gender differences emerged within each theme, but overall both mothers and fathers reported their priorities had shifted to focus on family after becoming parents, and those who were fitting in physical activity had developed strategies that allowed them to balance their household and occupational responsibilities.

Conclusions: The results of this study suggest working mothers and fathers report similar physical activity barriers and facilitators and would benefit from interventions that teach strategies for overcoming barriers and prioritizing physical activity amidst the demands of parenthood. Future interventions might consider targeting mothers and fathers in tandem to create an optimally supportive environment in the home.

ContributorsMailey, Emily L. (Author) / Huberty, Jennifer (Author) / Dinkel, Danae (Author) / McAuley, Edward (Author) / College of Health Solutions (Contributor)
Created2014-06-19
129669-Thumbnail Image.png
Description

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of

Nitrogen availability and cell density each affects growth and cellular astaxanthin content of Haematococcus pluvialis, but possible combined effects of these two factors on the content and productivity of astaxanthin, especially under outdoor culture conditions, is less understood. In this study, the effects of the initial biomass densities IBDs of 0.1, 0.5, 0.8, 1.5, 2.7, 3.5, and 5.0 g L-1 DW and initial nitrogen concentrations of 0, 4.4, 8.8, and 17.6 mM nitrate on growth and cellular astaxanthin content of H. pluvialis Flotow K-0084 were investigated in outdoor glass column photobioreactors in a batch culture mode. A low IBD of 0.1 g L-1 DW led to photo-bleaching of the culture within 1-2 days. When the IBD was 0.5 g L-1 and above, the rate at which the increase in biomass density and the astaxanthin content on a per cell basis was higher at lower IBD. When the IBD was optimal (i.e., 0.8 g L-1), the maximum astaxanthin content of 3.8% of DW was obtained in the absence of nitrogen, whereas the maximum astaxanthin productivity of 16.0 mg L-1 d(-1) was obtained in the same IBD culture containing 4.4 mM nitrogen. The strategies for achieving maximum Haematococcus biomass productivity and for maximum cellular astaxanthin content are discussed.

ContributorsWang, Junfeng (Author) / Sommerfeld, Milton (Author) / Lu, Congming (Author) / Hu, Qiang (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-30
129668-Thumbnail Image.png
Description

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the micro algal astaxanthin industry.

ContributorsHan, Danxiang (Author) / Li, Yantao (Author) / Hu, Qiang (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-30
129634-Thumbnail Image.png
Description

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species.

Conclusion: This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.

ContributorsWei, Li (Author) / Xin, Yi (Author) / Wang, Dongmei (Author) / Jing, Xiaoyan (Author) / Zhou, Qian (Author) / Su, Xiaoquan (Author) / Jia, Jing (Author) / Ning, Kang (Author) / Chen, Feng (Author) / Hu, Qiang (Author) / Xu, Jian (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-05