This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 15
Filtering by

Clear all filters

128843-Thumbnail Image.png
Description

Sexually selected infanticide is an important source of infant mortality in many mammalian species. In species with long-term male-female associations, females may benefit from male protection against infanticidal outsiders. We tested whether mountain gorilla (Gorilla beringei beringei) mothers in single and multi-male groups monitored by the Dian Fossey Gorilla Fund’s

Sexually selected infanticide is an important source of infant mortality in many mammalian species. In species with long-term male-female associations, females may benefit from male protection against infanticidal outsiders. We tested whether mountain gorilla (Gorilla beringei beringei) mothers in single and multi-male groups monitored by the Dian Fossey Gorilla Fund’s Karisoke Research Center actively facilitated interactions between their infants and a potentially protective male. We also evaluated the criteria mothers in multi-male groups used to choose a preferred male social partner. In single male groups, where infanticide risk and paternity certainty are high, females with infants <1 year old spent more time near and affiliated more with males than females without young infants. In multi-male groups, where infanticide rates and paternity certainty are lower, mothers with new infants exhibited few behavioral changes toward males. The sole notable change was that females with young infants proportionally increased their time near males they previously spent little time near when compared to males they had previously preferred, perhaps to encourage paternity uncertainty and deter aggression. Rank was a much better predictor of females’ social partner choice than paternity. Older infants (2–3 years) in multi-male groups mirrored their mothers’ preferences for individual male social partners; 89% spent the most time in close proximity to the male their mother had spent the most time near when they were <1 year old. Observed discrepancies between female behavior in single and multi-male groups likely reflect different levels of postpartum intersexual conflict; in groups where paternity certainty and infanticide risk are both high, male-female interests align and females behave accordingly. This highlights the importance of considering individual and group-level variation when evaluating intersexual conflict across the reproductive cycle.

ContributorsRosenbaum, Stacy (Author) / Hirwa, Jean Paul (Author) / Silk, Joan (Author) / Vigilant, Linda (Author) / Stoinski, Tara S. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-10
128760-Thumbnail Image.png
Description

Although vocal production in non-human primates is highly constrained, individuals appear to have some control over whether to call or remain silent. We investigated how contextual factors affect the production of grunts given by wild female chacma baboons, Papio ursinus, during social interactions. Females grunted as they approached other adult

Although vocal production in non-human primates is highly constrained, individuals appear to have some control over whether to call or remain silent. We investigated how contextual factors affect the production of grunts given by wild female chacma baboons, Papio ursinus, during social interactions. Females grunted as they approached other adult females 28% of the time. Supporting previous research, females were much more likely to grunt to mothers with young infants than to females without infants. Grunts also significantly increased the likelihood of affiliative interactions among all partners. Notably, however, grunts did not simply mirror existing social bonds. Instead, they appeared to perform a very different function: namely, to serve as signals of benign intent between partners whose relationship is not necessarily close or predictable. Females were less likely to grunt to their mothers or adult daughters—the individuals with whom they shared the closest and least aggressive bonds—than to other females. In contrast, patterns of grunting between sisters were similar to those between nonkin, perhaps reflecting sisters’ more ambivalent relationships. Females grunted at higher rates to lower-ranking, than to higher-ranking, females, supporting the hypothesis that grunts do not simply signal the signaler’s level of arousal or anxiety about receiving aggression, but instead function as signals of benign intent. Taken together, results suggest that the grunts given by female baboons serve to reduce uncertainty about the likely outcome of an interaction between partners whose relationship is not predictably affiliative. Despite their limited vocal repertoire, baboons appear to be skilled at modifying call production in different social contexts and for different audiences.

ContributorsSilk, Joan (Author) / Seyfarth, Robert M. (Author) / Cheney, Dorothy L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-26
128388-Thumbnail Image.png
Description

In many social mammals, females who form close, differentiated bonds with others experience greater offspring survival and longevity. We still know little, however, about how females' relationships are structured within the social group, or whether connections beyond the level of the dyad have any adaptive value. Here, we apply social

In many social mammals, females who form close, differentiated bonds with others experience greater offspring survival and longevity. We still know little, however, about how females' relationships are structured within the social group, or whether connections beyond the level of the dyad have any adaptive value. Here, we apply social network analysis to wild baboons in order to evaluate the comparative benefits of dyadic bonds against several network measures. Results suggest that females with strong dyadic bonds also showed high eigenvector centrality, a measure of the extent to which an individual's partners are connected to others in the network. Eigenvector centrality was a better predictor of offspring survival than dyadic bond strength. Previous results have shown that female baboons derive significant fitness benefits from forming close, stable bonds with several other females. Results presented here suggest that these benefits may be further augmented if a female's social partners are themselves well connected to others within the group rather than being restricted to a smaller clique.

ContributorsCheney, Dorothy L. (Author) / Silk, Joan (Author) / Seyfarth, Robert M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-27
127932-Thumbnail Image.png
Description

We study the so-called Descent, or [bar over Q], Equation for the null polygonal supersymmetric Wilson loop in the framework of the pentagon operator product expansion. To properly address this problem, one requires to restore the cyclicity of the loop broken by the choice of OPE channels. In the course

We study the so-called Descent, or [bar over Q], Equation for the null polygonal supersymmetric Wilson loop in the framework of the pentagon operator product expansion. To properly address this problem, one requires to restore the cyclicity of the loop broken by the choice of OPE channels. In the course of the study, we unravel a phenomenon of twist enhancement when passing to a cyclically shifted channel. Currently, we focus on the consistency of the all-order Descent Equation for the particular case relating the NMHV heptagon to MHV hexagon. We find that the equation establishes a relation between contributions of different twists and successfully verify it in perturbation theory making use of available bootstrap predictions for elementary pentagons.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-24
127905-Thumbnail Image.png
Description

We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some

We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a nontrivial analytic continuation which, in the framework of CFT, can be performed elegantly in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N = 4 SYM, making use of the well-known results on the four-point correlation function of half-BPS scalar operators. We compute the double scalar flow correlation in N = 4 SYM, at weak and strong coupling and show that it agrees with known results obtained by different techniques. One of the remarkable features of the N = 4 theory is that the scalar and energy flow correlations are proportional to each other. Imposing natural physical conditions on the energy flow correlations (finiteness, positivity and regularity), we formulate additional constraints on the four-point correlation functions in N = 4SYM that should be valid at any coupling and away from the planar limit.

ContributorsBelitsky, Andrei (Author) / Hohenegger, S. (Author) / Korchemsky, G. P. (Author) / Sokatchev, E. (Author) / Zhiboedov, A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
127909-Thumbnail Image.png
Description

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N = 4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4) R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-05
127914-Thumbnail Image.png
Description

We study event shapes in N = 4SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N

We study event shapes in N = 4SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N = 4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N = 4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.

ContributorsBelitsky, Andrei (Author) / Hohenegger, S. (Author) / Korchemsky, G. P. (Author) / Sokatchev, E. (Author) / Zhiboedov, A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
127838-Thumbnail Image.png
Description

We compute one-loop renormalization group equations for non-singlet twist-four operators in QCD. The calculation heavily relies on the light-cone gauge formalism in the momentum fraction space that essentially rephrases the analysis of all two-to-two and two-to-three transition kernels to purely algebraic manipulations both for non- and quasipartonic operators. This is

We compute one-loop renormalization group equations for non-singlet twist-four operators in QCD. The calculation heavily relies on the light-cone gauge formalism in the momentum fraction space that essentially rephrases the analysis of all two-to-two and two-to-three transition kernels to purely algebraic manipulations both for non- and quasipartonic operators. This is the first brute force calculation of this sector available in the literature. Fourier transforming our findings to the coordinate space, we checked them against available results obtained within a conformal symmetry-based formalism that bypasses explicit diagrammatic calculations and confirmed agreement with the latter.

ContributorsJi, Yao (Author) / Belitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-06
127844-Thumbnail Image.png
Description

Scattering amplitudes in maximally supersymmetric gauge theory are dual to super-Wilson loops on null polygonal contours. The operator product expansion for the latter revealed that their dynamics is governed by the evolution of multiparticle GKP excitations. They were shown to emerge from the spectral problem of an underlying open spin

Scattering amplitudes in maximally supersymmetric gauge theory are dual to super-Wilson loops on null polygonal contours. The operator product expansion for the latter revealed that their dynamics is governed by the evolution of multiparticle GKP excitations. They were shown to emerge from the spectral problem of an underlying open spin chain. In this work we solve this model with the help of the Baxter Q-operator and Sklyanin's Separation of Variables methods. We provide an explicit construction for eigenfunctions and eigenvalues of GKP excitations. We demonstrate how the former define the so-called multiparticle hexagon transitions in super-Wilson loops and prove their factorized form at leading order of 't Hooft coupling for particle number-preserving transitions that were suggested earlier in a generic case.

ContributorsBelitsky, Andrei (Author) / Derkachov, S. E. (Author) / Manashov, A. N. (Author)
Created2014-03-14
127860-Thumbnail Image.png
Description

We address the near-collinear expansion of multiparticle NMHV amplitudes, namely, the heptagon and octagons in the dual language of null polygonal super Wilson loops. In particular, we verify multiparticle factorization of charged pentagon transitions in terms of pentagons for single flux-tube excitations within the framework of refined operator product expansion.

We address the near-collinear expansion of multiparticle NMHV amplitudes, namely, the heptagon and octagons in the dual language of null polygonal super Wilson loops. In particular, we verify multiparticle factorization of charged pentagon transitions in terms of pentagons for single flux-tube excitations within the framework of refined operator product expansion. We find a perfect agreement with available tree and one-loop data.

ContributorsBelitsky, Andrei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-03