This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 26
Filtering by

Clear all filters

128725-Thumbnail Image.png
Description

In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes

In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes were evaluated using VO2 max testing on the treadmill, and strength assessment using a dynamometer to determine peak torque for leg extensions. Dietary data were assessed using detailed seven-day food logs. Although total protein intake was lower among vegetarians in comparison to omnivores, protein intake as a function of body mass did not differ by group (1.2 ± 0.3 and 1.4 ± 0.5 g/kg body mass for VEG and OMN respectively, p = 0.220). VO2 max differed for females by diet group (53.0 ± 6.9 and 47.1 ± 8.6 mL/kg/min for VEG and OMN respectively, p < 0.05) but not for males (62.6 ± 15.4 and 55.7 ± 8.4 mL/kg/min respectively). Peak torque did not differ significantly between diet groups. Results from this study indicate that vegetarian endurance athletes’ cardiorespiratory fitness was greater than that for their omnivorous counterparts, but that peak torque did not differ between diet groups. These data suggest that vegetarian diets do not compromise performance outcomes and may facilitate aerobic capacity in athletes.

ContributorsLynch, Heidi (Author) / Wharton, Christopher (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2016-11-15
128521-Thumbnail Image.png
Description

Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection

Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine.

ContributorsLiu, Qiong (Author) / Liu, Qing (Author) / Yi, Jie (Author) / Liang, Kang (Author) / Hu, Bo (Author) / Zhang, Xiangmin (Author) / Curtiss, Roy (Author) / Kong, Qingke (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-10-04
129573-Thumbnail Image.png
Description

Bacterial lipopolysaccharides (LPS) are structural components of the outer membranes of Gram-negative bacteria and also are potent inducers of inflammation in mammals. Higher vertebrates are extremely sensitive to LPS, but lower vertebrates, like fish, are resistant to their systemic toxic effects. However, the effects of LPS on the fish intestinal

Bacterial lipopolysaccharides (LPS) are structural components of the outer membranes of Gram-negative bacteria and also are potent inducers of inflammation in mammals. Higher vertebrates are extremely sensitive to LPS, but lower vertebrates, like fish, are resistant to their systemic toxic effects. However, the effects of LPS on the fish intestinal mucosa remain unknown. Edwardsiella ictaluri is a primitive member of the Enterobacteriaceae family that causes enteric septicemia in channel catfish (Ictalurus punctatus). E. ictaluri infects and colonizes deep lymphoid tissues upon oral or immersion infection. Both gut and olfactory organs are the primary sites of invasion. At the systemic level, E. ictaluri pathogenesis is relatively well characterized, but our knowledge about E. ictaluri intestinal interaction is limited. Recently, we observed that E. ictaluri oligo-polysaccharide (O-PS) LPS mutants have differential effects on the intestinal epithelia of orally inoculated catfish. Here we evaluate the effects of E. ictaluri O-PS LPS mutants by using a novel catfish intestinal loop model and compare it to the rabbit ileal loop model inoculated with Salmonella enterica serovar Typhimurium LPS. We found evident differences in rabbit ileal loop and catfish ileal loop responses to E. ictaluri and S. Typhimurium LPS. We determined that catfish respond to E. ictaluri LPS but not to S. Typhimurium LPS. We also determined that E. ictaluri inhibits cytokine production and induces disruption of the intestinal fish epithelia in an O-PS-dependent fashion. The E. ictaluri wild type and ΔwibT LPS mutant caused intestinal tissue damage and inhibited proinflammatory cytokine synthesis, in contrast to E. ictaluri Δgne and Δugd LPS mutants. We concluded that the E. ictaluri O-PS subunits play a major role during pathogenesis, since they influence the recognition of the LPS by the intestinal mucosal immune system of the catfish. The LPS structure of E. ictaluri mutants is needed to understand the mechanism of interaction.

ContributorsSantander, Javier (Author) / Kilbourne, Jacquelyn (Author) / Park, Jie Yeun (Author) / Martin, Taylor (Author) / Loh, Amanda (Author) / Diaz, Ignacia (Author) / Rojas, Robert (Author) / Segovia, Cristopher (Author) / DeNardo, Dale (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-08-01
129059-Thumbnail Image.png
Description

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9 kg/m2), the preload (isoenergetic peanut or grain bar with water, or water alone) was followed after 60 min with ingestion of a standardized glycemic test meal. Satiety and blood glucose were assessed immediately prior to the preload and to the test meal, and for two hours postmeal at 30-min intervals. In the parallel-arm, randomized trial (n = 44; 40.5 ± 1.6 y, 31.8 ± 0.9 kg/m2), the peanut or grain bar preload was consumed one hour prior to the evening meal for eight weeks. Body mass was measured at 2-week intervals, and secondary endpoints included blood hemoglobin A1c and energy intake as assessed by 3-d diet records collected at pre-trial and trial weeks 1 and 8.

Results: Satiety was elevated in the postprandial period following grain bar ingestion in comparison to peanut or water ingestion (p = 0.001, repeated-measures ANOVA). Blood glucose was elevated one hour after ingestion of the grain bar as compared to the peanut or water treatments; yet, total glycemia did not vary between treatments in the two hour postprandial period. In the 8-week trial, body mass was reduced for the grain bar versus peanut groups after eight weeks (−1.3 ± 0.4 kg versus −0.2 ± 0.3 kg, p = 0.033, analysis of covariance). Energy intake was reduced by 458 kcal/d in the first week of the trial for the grain bar group as compared to the peanut group (p = 0.118). Hemoglobin A1c changed significantly between groups during the trial (−0.25 ± 0.07% and −0.18 ± 0.12% for the grain bar and peanut groups respectively, p = 0.001).

Conclusions: Compared to an isoenergetic peanut preload, consumption of a grain bar preload one hour prior to a standardized meal significantly raised postmeal satiety. Moreover, consumption of the grain bar prior to the evening meal was associated with significant weight loss over time suggesting that glycemic carbohydrate ingestion prior to meals may be a weight management strategy.

ContributorsJohnston, Carol (Author) / Catherine, Trier (Author) / Fleming, Katie (Author) / College of Health Solutions (Contributor)
Created2013-03-27
129044-Thumbnail Image.png
Description

Background: Height is an important health assessment measure with many applications. In the medical practice and in research settings, height is typically measured with a stadiometer. Although lasers are commonly used by health professionals for measurement including facial imaging, corneal thickness, and limb length, it has not been utilized for

Background: Height is an important health assessment measure with many applications. In the medical practice and in research settings, height is typically measured with a stadiometer. Although lasers are commonly used by health professionals for measurement including facial imaging, corneal thickness, and limb length, it has not been utilized for measuring height. The purpose of this feasibility study was to examine the ease and accuracy of a laser device for measuring height in children and adults.

Findings: In immediate succession, participant height was measured in triplicate using a stadiometer followed by the laser device. Measurement error for the laser device was significantly higher than that for the stadiometer (0.35 and 0.20 cm respectively). However, the measurement techniques were highly correlated (r2 = 0.998 and 0.990 for the younger [<12 y, n = 25] and older [≥12 y, n = 100] participants respectively), and the estimated reliability between measurement techniques was 0.999 (ICC; 95 % CI: 0.998,1.000) and 0.995 (ICC; 95 % CI: 0.993,0.997) for the younger and older groups respectively. The average differences between the two styles of measurement (e.g., stadiometer minus laser) were significantly different from zero: +0.93 and +0.45 cm for the younger and older groups respectively.

Conclusions: These data demonstrate that laser technology can be adapted to measure height in children and adults. Although refinement is needed, the laser device for measuring height merits further development.

ContributorsMayol-Kreiser, Sandra (Author) / Garcia-Turner, Vanessa (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2015-08-31
128867-Thumbnail Image.png
Description

Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate

Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 107 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

ContributorsZhang, Xiangmin (Author) / Kong, Wei (Author) / Wanda, Soo-Young (Author) / Xin, Wei (Author) / Alamuri, Praveen (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-03-05
128845-Thumbnail Image.png
Description

Natural killer (NK) cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ) contributes to the control of early exponential replication of bacterial pathogens,

Natural killer (NK) cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ) contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18), independently of Toll-like receptor (TLR)-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.

Created2014-05-14
128828-Thumbnail Image.png
Description

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials.

Created2014-01-29
128827-Thumbnail Image.png
Description

Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion

Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion (Δlrp) and constitutive-lrp expression (lrpC) mutant strains. In this work, we used chromosomal PfimA-lacZ fusions and yeast agglutination assays to confirm and extend our previous results. Direct binding of Lrp to PfimA was shown by an electrophoretic mobility shift assay (EMSA) and DNA footprinting assay. Site-directed mutagenesis revealed that the Lrp-binding motifs in PfimA play a role in both activation and repression of type 1 fimbriae production. Overproduction of Lrp also abrogates fimZ expression. EMSA data showed that Lrp and FimZ proteins independently bind to PfimA without competitive exclusion. In addition, both Lrp and FimZ binding to PfimA caused a hyper retardation (supershift) of the DNA-protein complex compared to the shift when each protein was present alone. Nutrition-dependent cellular Lrp levels closely correlated with the amount of type 1 fimbriae production. These observations suggest that Lrp plays important roles in type 1 fimbriation by acting as both a positive and negative regulator and its effect depends, at least in part, on the cellular concentration of Lrp in response to the nutritional environment.

ContributorsBaek, Chang-Ho (Author) / Kang, Ho-Young (Author) / Roland, Kenneth (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2011-10-28
129320-Thumbnail Image.png
Description

Researchers have iterated that the future of synthetic biology and biotechnology lies in novel consumer applications of crossing biology with engineering. However, if the new biology's future is to be sustainable, early and serious efforts must be made towards social sustainability. Therefore, the crux of new applications of synthetic biology

Researchers have iterated that the future of synthetic biology and biotechnology lies in novel consumer applications of crossing biology with engineering. However, if the new biology's future is to be sustainable, early and serious efforts must be made towards social sustainability. Therefore, the crux of new applications of synthetic biology and biotechnology is public understanding and acceptance. The RASVaccine is a novel recombinant design not found in nature that re-engineers a common bacteria ( Salmonella) to produce a strong immune response in humans. Synthesis of the RASVaccine has the potential to improve public health as an inexpensive, non-injectable product. But how can scientists move forward to create a dialogue of creating a 'common sense' of this new technology in order to promote social sustainability? This paper delves into public issues raised around these novel technologies and uses the RASVaccine as an example of meeting the public with a common sense of its possibilities and limitations.

ContributorsDankel, Dorothy J. (Author) / Roland, Kenneth (Author) / Fisher, Michael (Author) / Brenneman, Karen (Author) / Delgado, Ana (Author) / Santander, Javier (Author) / Baek, Chang-Ho (Author) / Clark-Curtiss, Josephine (Author) / Strand, Roger (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2014-08-01