This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 39
Filtering by

Clear all filters

128003-Thumbnail Image.png
Description

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.

ContributorsTaylor, Sarah (Author) / Lewis, Candace (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-08
141484-Thumbnail Image.png
Description

Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults

Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

ContributorsHruschka, Daniel (Author) / Hadley, Craig (Author) / Brewis, Alexandra (Author) / Stojanowski, Christopher (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-27
141490-Thumbnail Image.png
Description

Background: The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment,

Background: The transition from the home to college is a phase in which emerging adults shift toward more unhealthy eating and physical activity patterns, higher body mass indices, thus increasing risk of overweight/obesity. Currently, little is understood about how changing friendship networks shape weight gain behaviors. This paper describes the recruitment, data collection, and data analytic protocols for the SPARC (Social impact of Physical Activity and nutRition in College) study, a longitudinal examination of the mechanisms by which friends and friendship networks influence nutrition and physical activity behaviors and weight gain in the transition to college life.

Methods: The SPARC study aims to follow 1450 university freshmen from a large university over an academic year, collecting data on multiple aspects of friends and friendship networks. Integrating multiple types of data related to student lives, ecological momentary assessments (EMAs) are administered via a cell phone application, devilSPARC. EMAs collected in four 1-week periods (a total of 4 EMA waves) are integrated with linked data from web-based surveys and anthropometric measurements conducted at four times points (for a total of eight data collection periods including EMAs, separated by ~1 month). University databases will provide student card data, allowing integration of both time-dated data on food purchasing, use of physical activity venues, and geographical information system (GIS) locations of these activities relative to other students in their social networks.

Discussion: Findings are intended to guide the development of more effective interventions to enhance behaviors among college students that protect against weight gain during college.

ContributorsBruening, Meg (Author) / Ohri-Vachaspati, Punam (Author) / Brewis, Alexandra (Author) / Laska, Melissa (Author) / Todd, Michael (Author) / Hruschka, Daniel (Author) / Schaefer, David (Author) / Whisner, Corrie (Author) / Dunton, Genevieve (Author) / College of Health Solutions (Contributor)
Created2016-08-30
Description

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the Wistar Kyoto (WKY) control strain over a range of nicotine doses (0.0, 0.1, 0.3 and 0.6 mg/kg). Prior to conditioning, SHRs were more active and less biased toward one side of the CPP chamber than WKY rats. Following conditioning, SHRs developed CPP to the highest dose of nicotine (0.6 mg/kg), whereas WKYs did not develop CPP to any nicotine dose tested. During conditioning, SHRs displayed greater locomotor activity in the nicotine-paired compartment than in the saline-paired compartment across conditioning trials. SHRs that received nicotine (0.1, 0.3, 0.6 mg/kg) in the nicotine-paired compartment showed an increase in locomotor activity between conditioning trials. Nicotine did not significantly affect WKY locomotor activity. These findings suggest that the SHR strain is a suitable model for studying ADHD-related nicotine use and dependence, but highlights potential limitations of the WKY control strain and the CPP procedure for modeling ADHD-related nicotine reward.

ContributorsWatterson, Elizabeth (Author) / Daniels, Carter (Author) / Watterson, Lucas (Author) / Mazur, Gabriel (Author) / Brackney, Ryan (Author) / Olive, M. Foster (Author) / Sanabria, Federico (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-15
128733-Thumbnail Image.png
Description

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

ContributorsWatterson, Lucas (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-30
128867-Thumbnail Image.png
Description

Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate

Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 107 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.

ContributorsZhang, Xiangmin (Author) / Kong, Wei (Author) / Wanda, Soo-Young (Author) / Xin, Wei (Author) / Alamuri, Praveen (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2015-03-05
128845-Thumbnail Image.png
Description

Natural killer (NK) cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ) contributes to the control of early exponential replication of bacterial pathogens,

Natural killer (NK) cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ) contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18), independently of Toll-like receptor (TLR)-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.

Created2014-05-14
128828-Thumbnail Image.png
Description

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate

The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials.

Created2014-01-29
128827-Thumbnail Image.png
Description

Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion

Leucine-responsive regulatory protein (Lrp) is known to be an indirect activator of type 1 fimbriae synthesis in Salmonella enterica serovar Typhimurium via direct regulation of FimZ, a direct positive regulator for type 1 fimbriae production. Using RT-PCR, we have shown previously that fimA transcription is dramatically impaired in both lrp-deletion (Δlrp) and constitutive-lrp expression (lrpC) mutant strains. In this work, we used chromosomal PfimA-lacZ fusions and yeast agglutination assays to confirm and extend our previous results. Direct binding of Lrp to PfimA was shown by an electrophoretic mobility shift assay (EMSA) and DNA footprinting assay. Site-directed mutagenesis revealed that the Lrp-binding motifs in PfimA play a role in both activation and repression of type 1 fimbriae production. Overproduction of Lrp also abrogates fimZ expression. EMSA data showed that Lrp and FimZ proteins independently bind to PfimA without competitive exclusion. In addition, both Lrp and FimZ binding to PfimA caused a hyper retardation (supershift) of the DNA-protein complex compared to the shift when each protein was present alone. Nutrition-dependent cellular Lrp levels closely correlated with the amount of type 1 fimbriae production. These observations suggest that Lrp plays important roles in type 1 fimbriation by acting as both a positive and negative regulator and its effect depends, at least in part, on the cellular concentration of Lrp in response to the nutritional environment.

ContributorsBaek, Chang-Ho (Author) / Kang, Ho-Young (Author) / Roland, Kenneth (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2011-10-28