This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 25
Filtering by

Clear all filters

129552-Thumbnail Image.png
Description

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80

S-cysteinylated albumin and methionine-oxidized apolipoprotein A-I (apoA-I) have been posed as candidate markers of diseases associated with oxidative stress. Here, a dilute-and-shoot form of LC–electrospray ionization–MS requiring half a microliter of blood plasma was employed to simultaneously quantify the relative abundance of these oxidized proteoforms in samples stored at −80 °C, −20 °C, and room temperature and exposed to multiple freeze-thaw cycles and other adverse conditions in order to assess the possibility that protein oxidation may occur as a result of poor sample storage or handling. Samples from a healthy donor and a participant with poorly controlled type 2 diabetes started at the same low level of protein oxidation and behaved similarly; significant increases in albumin oxidation via S-cysteinylation were found to occur within hours at room temperature and days at −20 °C. Methionine oxidation of apoA-I took place on a longer time scale, setting in after albumin oxidation reached a plateau. Freeze–thaw cycles had a minimal effect on protein oxidation. In matched collections, protein oxidation in serum was the same as that in plasma. Albumin and apoA-I oxidation were not affected by sample headspace or the degree to which vials were sealed. ApoA-I, however, was unexpectedly found to oxidize faster in samples with lower surface-area-to-volume ratios. An initial survey of samples from patients with inflammatory conditions normally associated with elevated oxidative stress-including acute myocardial infarction and prostate cancer—demonstrated a lack of detectable apoA-I oxidation. Albumin S-cysteinylation in these samples was consistent with known but relatively brief exposures to temperatures above −30 °C (the freezing point of blood plasma). Given their properties and ease of analysis, these oxidized proteoforms, once fully validated, may represent the first markers of blood plasma specimen integrity based on direct measurement of oxidative molecular damage that can occur under suboptimal storage conditions.

ContributorsBorges, Chad (Author) / Rehder, Douglas (Author) / Jensen, Sally (Author) / Schaab, Matthew (Author) / Sherma, Nisha (Author) / Yassine, Hussein (Author) / Nikolova, Boriana (Author) / Breburda, Christian (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-07-01
Description

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies.

ContributorsMoya, Noel (Author) / Cutts, Joshua (Author) / Gaasterland, Terry (Author) / Willert, Karl (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-09
128972-Thumbnail Image.png
Description

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number of deaths was repeatedly sampled from all deaths that occurred during a hot weather event, and compared with deaths during a control period. The deaths were compared with respect to five factors known to be associated with hot weather mortality. Individuals were ranked by their presence in significant models over 100 trials of 10,000 repetitions. Those with the highest rankings were identified as probable excess deaths. Sensitivity analyses were performed on a range of model combinations. These methods were applied to a 2009 hot weather event in greater Vancouver, Canada.

Results: The excess deaths identified were sensitive to differences in model combinations, particularly between univariate and multivariate approaches. One multivariate and one univariate combination were chosen as the best models for further analyses. The individuals identified by multiple combinations suggest that marginalized populations in greater Vancouver are at higher risk of death during hot weather.

Conclusions: This study proposes novel methods for classifying specific deaths as expected or excess during a hot weather event. Further work is needed to evaluate performance of the methods in simulation studies and against clinically identified cases. If confirmed, these methods could be applied to a wide range of populations and events of interest.

Created2016-11-15
128975-Thumbnail Image.png
Description

Background: Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move

Background: Cysteine sulfenic acid (Cys-SOH) plays important roles in the redox regulation of numerous proteins. As a relatively unstable posttranslational protein modification it is difficult to quantify the degree to which any particular protein is modified by Cys-SOH within a complex biological environment. The goal of these studies was to move a step beyond detection and into the relative quantification of Cys-SOH within specific proteins found in a complex biological setting--namely, human plasma.

Results: This report describes the possibilities and limitations of performing such analyses based on the use of thionitrobenzoic acid and dimedone-based probes which are commonly employed to trap Cys-SOH. Results obtained by electrospray ionization-based mass spectrometric immunoassay reveal the optimal type of probe for such analyses as well as the reproducible relative quantification of Cys-SOH within albumin and transthyretin extracted from human plasma--the latter as a protein previously unknown to be modified by Cys-SOH.

Conclusions: The relative quantification of Cys-SOH within specific proteins in a complex biological setting can be accomplished, but several analytical precautions related to trapping, detecting, and quantifying Cys-SOH must be taken into account prior to pursuing its study in such matrices.

ContributorsRehder, Douglas (Author) / Borges, Chad (Author) / Biodesign Institute (Contributor)
Created2010-07-01
128773-Thumbnail Image.png
Description

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form amyloid. However, the relative abundance of truncated SAA in diabetes and chronic kidney disease is not known.

Methods: Using mass spectrometric immunoassay, the abundance of SAA truncations relative to the native variants was examined in plasma of 91 participants with type 2 diabetes and chronic kidney disease and 69 participants without diabetes.

Results: The ratio of SAA 1.1 (missing N-terminal arginine) to native SAA 1.1 was lower in diabetics compared to non-diabetics (p = 0.004), and in males compared to females (p<0.001). This ratio was negatively correlated with glycated hemoglobin (r = −0.32, p<0.001) and triglyceride concentrations (r = −0.37, p<0.001), and positively correlated with HDL cholesterol concentrations (r = 0.32, p<0.001).

Conclusion: The relative abundance of the N-terminal arginine truncation of SAA1.1 is significantly decreased in diabetes and negatively correlates with measures of glycemic and lipid control.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / He, Huijuan (Author) / Borges, Chad (Author) / Nedelkov, Dobrin (Author) / Mack, Wendy (Author) / Kono, Naoko (Author) / Koska, Juraj (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Biodesign Institute (Contributor)
Created2015-01-21
128306-Thumbnail Image.png
Description

The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species

The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses.

ContributorsParkinson, Alan J. (Author) / Evengard, Birgitta (Author) / Semenza, Jan C. (Author) / Ogden, Nicholas (Author) / Borresen, Malene L. (Author) / Berner, Jim (Author) / Brubaker, Michael (Author) / Sjostedt, Anders (Author) / Evander, Magnus (Author) / Hondula, David M. (Author) / Menne, Bettina (Author) / Pshenichnaya, Natalia (Author) / Gounder, Prabhu (Author) / Larose, Tricia (Author) / Revich, Boris (Author) / Hueffer, Karsten (Author) / Albihn, Ann (Author) / College of Public Service and Community Solutions (Contributor)
Created2014-09-30
128409-Thumbnail Image.png
Description

Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships.
Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag,

Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships.
Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method.
Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series.

Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable.

Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality.

Created2015-12-04
128411-Thumbnail Image.png
Description

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed

Background: Extreme heat is a public health challenge. The scarcity of directly comparable studies on the association of heat with morbidity and mortality and the inconsistent identification of threshold temperatures for severe impacts hampers the development of comprehensive strategies aimed at reducing adverse heat-health events.

Objectives: This quantitative study was designed to link temperature with mortality and morbidity events in Maricopa County, Arizona, USA, with a focus on the summer season.
Methods: Using Poisson regression models that controlled for temporal confounders, we assessed daily temperature–health associations for a suite of mortality and morbidity events, diagnoses, and temperature metrics. Minimum risk temperatures, increasing risk temperatures, and excess risk temperatures were statistically identified to represent different “trigger points” at which heat-health intervention measures might be activated.

Results: We found significant and consistent associations of high environmental temperature with all-cause mortality, cardiovascular mortality, heat-related mortality, and mortality resulting from conditions that are consequences of heat and dehydration. Hospitalizations and emergency department visits due to heat-related conditions and conditions associated with consequences of heat and dehydration were also strongly associated with high temperatures, and there were several times more of those events than there were deaths. For each temperature metric, we observed large contrasts in trigger points (up to 22°C) across multiple health events and diagnoses.

Conclusion: Consideration of multiple health events and diagnoses together with a comprehensive approach to identifying threshold temperatures revealed large differences in trigger points for possible interventions related to heat. Providing an array of heat trigger points applicable for different end-users may improve the public health response to a problem that is projected to worsen in the coming decades.

Created2015-07-28
128416-Thumbnail Image.png
Description

Adult and pluripotent stem cells represent a ready supply of cellular raw materials that can be used to generate the functionally mature cells needed to replace damaged or diseased heart tissue. However, the use of stem cells for cardiac regenerative therapies is limited by the low efficiency by which stem

Adult and pluripotent stem cells represent a ready supply of cellular raw materials that can be used to generate the functionally mature cells needed to replace damaged or diseased heart tissue. However, the use of stem cells for cardiac regenerative therapies is limited by the low efficiency by which stem cells are differentiated in vitro to cardiac lineages as well as the inability to effectively deliver stem cells and their derivatives to regions of damaged myocardium. In this review, we discuss the various biomaterial-based approaches that are being implemented to direct stem cell fate both in vitro and in vivo. First, we discuss the stem cell types available for cardiac repair and the engineering of naturally and synthetically derived biomaterials to direct their in vitro differentiation to the cell types that comprise heart tissue. Next, we describe biomaterial-based approaches that are being implemented to enhance the in vivo integration and differentiation of stem cells delivered to areas of cardiac damage. Finally, we present emerging trends of using stem cell-based biomaterial approaches to deliver pro-survival factors and fully vascularized tissue to the damaged and diseased cardiac tissue.

ContributorsCutts, Joshua (Author) / Nikkhah, Mehdi (Author) / Brafman, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-01
128420-Thumbnail Image.png
Description

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more

Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a “proof-of-principle” that enzymatic inhibition of QSOX1 may have clinical relevancy.

ContributorsHanavan, Paul (Author) / Borges, Chad (Author) / Katchman, Benjamin (Author) / Faigel, Douglas O. (Author) / Ho, Thai H. (Author) / Ma, Chen-Ting (Author) / Sergienko, Eduard A. (Author) / Meurice, Nathalie (Author) / Petit, Joachim L. (Author) / Lake, Douglas (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-01