This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 24
Filtering by

Clear all filters

129533-Thumbnail Image.png
Description

Novel hydride chemistries are employed to deposit light-emitting Ge1-y Snyalloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold

Novel hydride chemistries are employed to deposit light-emitting Ge1-y Snyalloys with y ≤ 0.1 by Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD) on Ge-buffered Si wafers. The properties of the resultant materials are systematically compared with similar alloys grown directly on Si wafers. The fundamental difference between the two systems is a fivefold (and higher) decrease in lattice mismatch between film and virtual substrate, allowing direct integration of bulk-like crystals with planar surfaces and relatively low dislocation densities. For y ≤ 0.06, the CVD precursors used were digermane Ge2H6 and deuterated stannane SnD4. For y ≥ 0.06, the Ge precursor was changed to trigermane Ge3H8, whose higher reactivity enabled the fabrication of supersaturated samples with the target film parameters. In all cases, the Ge wafers were produced using tetragermane Ge4H10 as the Ge source. The photoluminescence intensity from Ge1-y Sny /Ge films is expected to increase relative to Ge1-y Sny /Si due to the less defected interface with the virtual substrate. However, while Ge1-y Sny /Si films are largely relaxed, a significant amount of compressive strain may be present in the Ge1-y Sny /Ge case. This compressive strain can reduce the emission intensity by increasing the separation between the direct and indirect edges. In this context, it is shown here that the proposed CVD approach to Ge1-y Sny /Ge makes it possible to approach film thicknesses of about 1  μm, for which the strain is mostly relaxed and the photoluminescence intensity increases by one order of magnitude relative to Ge1-y Sny /Si films. The observed strain relaxation is shown to be consistent with predictions from strain-relaxation models first developed for the Si1-x Gex /Si system. The defect structure and atomic distributions in the films are studied in detail using advanced electron-microscopy techniques, including aberration corrected STEM imaging and EELS mapping of the average diamond–cubic lattice.

ContributorsSenaratne, Charutha Lasitha (Author) / Gallagher, J. D. (Author) / Jiang, Liying (Author) / Aoki, Toshihiro (Author) / Smith, David (Author) / Menéndez, Jose (Author) / Kouvetakis, John (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-10-07
129253-Thumbnail Image.png
Description

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy electron diffraction, x-ray diffraction, and high-resolution electron microscopy. In situ x-ray photoelectron spectroscopy was used to confirm the presence of the oxygen-deficient layer. Electrical characterization indicates sheet carrier densities of ∼1013 cm−2 at room temperature for the sample deposited at 700 °C, with a maximum electron Hall mobility of 3100 cm2V-1s-1 at 3.2 K and room temperature mobility of 22 cm2V-1s-1. Annealing in oxygen is found to reduce the carrier density and turn a conductive sample into an insulator.

ContributorsKormondy, Kristy J. (Author) / Posadas, Agham B. (Author) / Ngo, Thong Q. (Author) / Lu, Sirong (Author) / Goble, Nicholas (Author) / Jordan-Sweet, Jean (Author) / Gao, Xuan P. A. (Author) / Smith, David (Author) / McCartney, Martha (Author) / Ekerdt, John G. (Author) / Demkov, Alexander A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-07
129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129431-Thumbnail Image.png
Description

We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains

We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

ContributorsZhang, D. (Author) / Ray, N. M. (Author) / Petuskey, William (Author) / Smith, David (Author) / McCartney, Martha (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-28
129205-Thumbnail Image.png
Description

The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001)

The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO3 (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001) surface is a necessary template to achieve crystalline films upon annealing. The SHO films exhibit excellent crystallinity, as shown by x-ray diffraction and transmission electron microscopy. The SHO films have favorable electronic properties for consideration as a high-k gate dielectric on Ge, with satisfactory band offsets (>2 eV), low leakage current (<10-5 A/cm2 at an applied field of 1 MV/cm) at an equivalent oxide thickness of 1 nm, and a reasonable dielectric constant (k ∼ 18). The interface trap density (Dit) is estimated to be as low as ∼2 × 1012 cm-2 eV-1 under the current growth and anneal conditions. Some interfacial reaction is observed between SHO and Ge at temperatures above ∼650 °C, which may contribute to increased Dit value. This study confirms the potential for crystalline oxides grown directly on Ge by atomic layer deposition for advanced electronic applications.

ContributorsMcDaniel, Martin D. (Author) / Hu, Chengqing (Author) / Lu, Sirong (Author) / Ngo, Thong Q. (Author) / Posadas, Agham (Author) / Jiang, Aiting (Author) / Smith, David (Author) / Yu, Edward T. (Author) / Demkov, Alexander A. (Author) / Ekerdt, John G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-07
128972-Thumbnail Image.png
Description

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number of deaths was repeatedly sampled from all deaths that occurred during a hot weather event, and compared with deaths during a control period. The deaths were compared with respect to five factors known to be associated with hot weather mortality. Individuals were ranked by their presence in significant models over 100 trials of 10,000 repetitions. Those with the highest rankings were identified as probable excess deaths. Sensitivity analyses were performed on a range of model combinations. These methods were applied to a 2009 hot weather event in greater Vancouver, Canada.

Results: The excess deaths identified were sensitive to differences in model combinations, particularly between univariate and multivariate approaches. One multivariate and one univariate combination were chosen as the best models for further analyses. The individuals identified by multiple combinations suggest that marginalized populations in greater Vancouver are at higher risk of death during hot weather.

Conclusions: This study proposes novel methods for classifying specific deaths as expected or excess during a hot weather event. Further work is needed to evaluate performance of the methods in simulation studies and against clinically identified cases. If confirmed, these methods could be applied to a wide range of populations and events of interest.

Created2016-11-15
128290-Thumbnail Image.png
Description

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land cover-supported, atmospherically-corrected dynamic mixture model applied to 20+ years (1992–2013) of combined, daily, passive/active microwave remote sensing data. The resulting product, known as Surface Water Microwave Product Series (SWAMPS), shows strong microwave sensitivity to sub-grid scale open water and inundated wetlands comprising open plant canopies. SWAMPS’ FW compares favorably (R2 = 91%–94%) with higher-resolution, global-scale maps of open water from MODIS and SRTM-MOD44W. Correspondence of SWAMPS with open water and wetland products from satellite SAR in Alaska and the Amazon deteriorates when exposed wetlands or inundated forests captured by the SAR products were added to the open water fraction reflecting SWAMPS’ inability to detect water underneath the soil surface or beneath closed forest canopies. Except for a brief period of drying during the first 4 years of observation, the inundation extent for the global domain excluding the coast was largely stable. Regionally, inundation in North America is advancing while inundation is on the retreat in Tropical Africa and North Eurasia. SWAMPS provides a consistent and long-term global record of daily FW dynamics, with documented accuracies suitable for hydrologic assessment and global change-related investigations.

ContributorsSchroeder, Ronny (Author) / McDonald, Kyle C. (Author) / Chapman, Bruce D. (Author) / Jensen, Katherine (Author) / Podest, Erika (Author) / Tessler, Zachary D. (Author) / Bohn, Theodore (Author) / Zimmermann, Reiner (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09
128306-Thumbnail Image.png
Description

The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species

The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses.

ContributorsParkinson, Alan J. (Author) / Evengard, Birgitta (Author) / Semenza, Jan C. (Author) / Ogden, Nicholas (Author) / Borresen, Malene L. (Author) / Berner, Jim (Author) / Brubaker, Michael (Author) / Sjostedt, Anders (Author) / Evander, Magnus (Author) / Hondula, David M. (Author) / Menne, Bettina (Author) / Pshenichnaya, Natalia (Author) / Gounder, Prabhu (Author) / Larose, Tricia (Author) / Revich, Boris (Author) / Hueffer, Karsten (Author) / Albihn, Ann (Author) / College of Public Service and Community Solutions (Contributor)
Created2014-09-30
128319-Thumbnail Image.png
Description

A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP)

A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data.

The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m-2 yr-2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength.

The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements controlling vegetation productivity and soil respiration as being needed for reducing uncertainty in land-atmosphere CO2 exchange. These advances will require collection of new field data on vegetation and soil dynamics, the development of benchmarking data sets from measurements and remote-sensing observations, and investments in future model development and intercomparison studies.

ContributorsRawlins, M. A. (Author) / McGuire, A. D. (Author) / Kimball, J. S. (Author) / Dass, P. (Author) / Lawrence, D. (Author) / Burke, E. (Author) / Chen, X. (Author) / Delire, C. (Author) / Koven, C. (Author) / MacDougall, A. (Author) / Peng, S. (Author) / Rinke, A. (Author) / Saito, K. (Author) / Zhang, W. (Author) / Alkama, R. (Author) / Bohn, Theodore (Author) / Ciais, P. (Author) / Decharme, B. (Author) / Gouttevin, I. (Author) / Hajima, T. (Author) / Ji, D. (Author) / Krinner, G. (Author) / Lettenmaier, D. P. (Author) / Miller, P. (Author) / Moore, J. C. (Author) / Smith, B. (Author) / Sueyoshi, T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-28
128187-Thumbnail Image.png
Description

Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and

Soil temperature (Ts) change is a key indicator of the dynamics of permafrost. On seasonal and interannual timescales, the variability of Ts determines the active-layer depth, which regulates hydrological soil properties and biogeochemical processes. On the multi-decadal scale, increasing Ts not only drives permafrost thaw/retreat but can also trigger and accelerate the decomposition of soil organic carbon. The magnitude of permafrost carbon feedbacks is thus closely linked to the rate of change of soil thermal regimes. In this study, we used nine process-based ecosystem models with permafrost processes, all forced by different observation-based climate forcing during the period 1960–2000, to characterize the warming rate of Ts in permafrost regions. There is a large spread of Ts trends at 20 cm depth across the models, with trend values ranging from 0.010 ± 0.003 to 0.031 ± 0.005 °C yr-1. Most models show smaller increase in Ts with increasing depth. Air temperature (Tsub>a) and longwave downward radiation (LWDR) are the main drivers of Ts trends, but their relative contributions differ amongst the models. Different trends of LWDR used in the forcing of models can explain 61 % of their differences in Ts trends, while trends of Ta only explain 5 % of the differences in Ts trends. Uncertain climate forcing contributes a larger uncertainty in Ts trends (0.021 ± 0.008 °C yr-1, mean ± standard deviation) than the uncertainty of model structure (0.012 ± 0.001 °C yr-1), diagnosed from the range of response between different models, normalized to the same forcing. In addition, the loss rate of near-surface permafrost area, defined as total area where the maximum seasonal active-layer thickness (ALT) is less than 3 m loss rate, is found to be significantly correlated with the magnitude of the trends of Ts at 1 m depth across the models (R = −0.85, P = 0.003), but not with the initial total near-surface permafrost area (R = −0.30, P = 0.438). The sensitivity of the total boreal near-surface permafrost area to Ts at 1 m is estimated to be of −2.80 ± 0.67 million km2°C-1. Finally, by using two long-term LWDR data sets and relationships between trends of LWDR and Ts across models, we infer an observation-constrained total boreal near-surface permafrost area decrease comprising between 39 ± 14  ×  103 and 75 ± 14  ×  103km2yr-1 from 1960 to 2000. This corresponds to 9–18 % degradation of the current permafrost area.

ContributorsPeng, S. (Author) / Ciais, P. (Author) / Krinner, G. (Author) / Wang, T. (Author) / Gouttevin, I. (Author) / McGuire, A. D. (Author) / Lawrence, D. (Author) / Burke, E. (Author) / Chen, X. (Author) / Decharme, B. (Author) / Koven, C. (Author) / MacDougall, A. (Author) / Rinke, A. (Author) / Saito, K. (Author) / Zhang, W. (Author) / Alkama, R. (Author) / Bohn, Theodore (Author) / Delire, C. (Author) / Hajima, T. (Author) / Ji, D. (Author) / Lettenmaier, D. P. (Author) / Miller, P. A. (Author) / Moore, J. C. (Author) / Smith, B. (Author) / Sueyoshi, T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-01-20