This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

128360-Thumbnail Image.png
Description

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course

We recommend using backward design to develop course-based undergraduate research experiences (CUREs). The defining hallmark of CUREs is that students in a formal lab course explore research questions with unknown answers that are broadly relevant outside the course. Because CUREs lead to novel research findings, they represent a unique course design challenge, as the dual nature of these courses requires course designers to consider two distinct, but complementary, sets of goals for the CURE: 1) scientific discovery milestones (i.e., research goals) and 2) student learning in cognitive, psychomotor, and affective domains (i.e., pedagogical goals). As more undergraduate laboratory courses are re-imagined as CUREs, how do we thoughtfully design these courses to effectively meet both sets of goals? In this Perspectives article, we explore this question and outline recommendations for using backward design in CURE development.

ContributorsCooper, Katelyn (Author) / Soneral, Paula A. G. (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26
128826-Thumbnail Image.png
Description

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences

Women who start college in one of the natural or physical sciences leave in greater proportions than their male peers. The reasons for this difference are complex, and one possible contributing factor is the social environment women experience in the classroom. Using social network analysis, we explore how gender influences the confidence that college-level biology students have in each other’s mastery of biology. Results reveal that males are more likely than females to be named by peers as being knowledgeable about the course content. This effect increases as the term progresses, and persists even after controlling for class performance and outspokenness. The bias in nominations is specifically due to males over-nominating their male peers relative to their performance. The over-nomination of male peers is commensurate with an overestimation of male grades by 0.57 points on a 4 point grade scale, indicating a strong male bias among males when assessing their classmates. Females, in contrast, nominated equitably based on student performance rather than gender, suggesting they lacked gender biases in filling out these surveys. These trends persist across eleven surveys taken in three different iterations of the same Biology course. In every class, the most renowned students are always male. This favoring of males by peers could influence student self-confidence, and thus persistence in this STEM discipline.

ContributorsGrunspan, Daniel Z. (Author) / Eddy, Sarah L. (Author) / Brownell, Sara (Author) / Wiggins, Benjamin L. (Author) / Crowe, Alison J. (Author) / Goodreau, Steven M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-10
129239-Thumbnail Image.png
Description

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members

The U.S. scientific research community does not reflect America's diversity. Hispanics, African Americans, and Native Americans made up 31% of the general population in 2010, but they represented only 18 and 7% of science, technology, engineering, and mathematics (STEM) bachelor's and doctoral degrees, respectively, and 6% of STEM faculty members (National Science Foundation [NSF], 2013). Equity in the scientific research community is important for a variety of reasons; a diverse community of researchers can minimize the negative influence of bias in scientific reasoning, because people from different backgrounds approach a problem from different perspectives and can raise awareness regarding biases (Intemann, 2009). Additionally, by failing to be attentive to equity, we may exclude some of the best and brightest scientific minds and limit the pool of possible scientists (Intemann, 2009). Given this need for equity, how can our scientific research community become more inclusive?

ContributorsBangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
128506-Thumbnail Image.png
Description

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent,

A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16° (~6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53° N for the period 1950-2013. The dataset improves previous products in spatial extent, orographic precipitation adjustment over Mexico and parts of Canada, and reduction of transboundary discontinuities. The impacts of adjusting gridded precipitation for orographic effects are quantified by scaling precipitation to an elevation-aware 1981-2010 precipitation climatology in Mexico and Canada. Differences are evaluated in terms of total precipitation as well as by hydrologic quantities simulated with a land surface model. Overall, orographic correction impacts total precipitation by up to 50% in mountainous regions outside CONUS. Hydrologic fluxes show sensitivities of similar magnitude, with discharge more sensitive than evapotranspiration and soil moisture. Because of the consistent gridding methodology, the current product reduces transboundary discontinuities as compared with a commonly used reanalysis product, making it suitable for estimating large-scale hydrometeorologic phenomena.

ContributorsLivneh, Ben (Author) / Bohn, Theodore (Author) / Pierce, David W. (Author) / Munoz-Arriola, Francisco (Author) / Nijssen, Bart (Author) / Vose, Russell (Author) / Cayan, Daniel R. (Author) / Brekke, Levi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-08-18
128442-Thumbnail Image.png
Description

Integrating research experiences into undergraduate life sciences curricula in the form of course-based undergraduate research experiences (CUREs) can meet national calls for education reform by giving students the chance to “do science.” In this article, we provide a step-by-step practical guide to help instructors assess their CUREs using best practices

Integrating research experiences into undergraduate life sciences curricula in the form of course-based undergraduate research experiences (CUREs) can meet national calls for education reform by giving students the chance to “do science.” In this article, we provide a step-by-step practical guide to help instructors assess their CUREs using best practices in assessment. We recommend that instructors first identify their anticipated CURE learning outcomes, then work to identify an assessment instrument that aligns to those learning outcomes and critically evaluate the results from their course assessment. To aid instructors in becoming aware of what instruments have been developed, we have also synthesized a table of “off-the-shelf” assessment instruments that instructors could use to assess their own CUREs. However, we acknowledge that each CURE is unique and instructors may expect specific learning outcomes that cannot be assessed using existing assessment instruments, so we recommend that instructors consider developing their own assessments that are tightly aligned to the context of their CURE.

ContributorsShortlidge, Erin (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-12
127952-Thumbnail Image.png
Description

Summer bridge programs are designed to help transition students into the college learning environment. Increasingly, bridge programs are being developed in science, technology, engineering, and mathematics (STEM) disciplines because of the rigorous content and lower student persistence in college STEM compared with other disciplines. However, to our knowledge, a comprehensive

Summer bridge programs are designed to help transition students into the college learning environment. Increasingly, bridge programs are being developed in science, technology, engineering, and mathematics (STEM) disciplines because of the rigorous content and lower student persistence in college STEM compared with other disciplines. However, to our knowledge, a comprehensive review of STEM summer bridge programs does not exist. To provide a resource for bridge program developers, we conducted a systematic review of the literature on STEM summer bridge programs. We identified 46 published reports on 30 unique STEM bridge programs that have been published over the past 25 years. In this review, we report the goals of each bridge program and whether the program was successful in meeting these goals. We identify 14 distinct bridge program goals that can be organized into three categories: academic success goals, psychosocial goals, and department-level goals. Building on the findings of published bridge reports, we present a set of recommendations for STEM bridge programs in hopes of developing better bridges into college.

ContributorsAshley, Michael (Author) / Cooper, Katelyn (Author) / Cala, Jacqueline (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-12-01
128298-Thumbnail Image.png
Description

The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful

The shift from cookbook to authentic research-based lab courses in undergraduate biology necessitates the need for evaluation and assessment of these novel courses. Although the biology education community has made progress in this area, it is important that we interpret the effectiveness of these courses with caution and remain mindful of inherent limitations to our study designs that may impact internal and external validity. The specific context of a research study can have a dramatic impact on the conclusions. We present a case study of our own three-year investigation of the impact of a research-based introductory lab course, highlighting how volunteer students, a lack of a comparison group, and small sample sizes can be limitations of a study design that can affect the interpretation of the effectiveness of a course.

ContributorsBrownell, Sara (Author) / Kloser, Matthew J. (Author) / Fukami, Tadashi (Author) / Shavelson, Richard J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-02
128290-Thumbnail Image.png
Description

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land

The sensitivity of Earth’s wetlands to observed shifts in global precipitation and temperature patterns and their ability to produce large quantities of methane gas are key global change questions. We present a microwave satellite-based approach for mapping fractional surface water (FW) globally at 25-km resolution. The approach employs a land cover-supported, atmospherically-corrected dynamic mixture model applied to 20+ years (1992–2013) of combined, daily, passive/active microwave remote sensing data. The resulting product, known as Surface Water Microwave Product Series (SWAMPS), shows strong microwave sensitivity to sub-grid scale open water and inundated wetlands comprising open plant canopies. SWAMPS’ FW compares favorably (R2 = 91%–94%) with higher-resolution, global-scale maps of open water from MODIS and SRTM-MOD44W. Correspondence of SWAMPS with open water and wetland products from satellite SAR in Alaska and the Amazon deteriorates when exposed wetlands or inundated forests captured by the SAR products were added to the open water fraction reflecting SWAMPS’ inability to detect water underneath the soil surface or beneath closed forest canopies. Except for a brief period of drying during the first 4 years of observation, the inundation extent for the global domain excluding the coast was largely stable. Regionally, inundation in North America is advancing while inundation is on the retreat in Tropical Africa and North Eurasia. SWAMPS provides a consistent and long-term global record of daily FW dynamics, with documented accuracies suitable for hydrologic assessment and global change-related investigations.

ContributorsSchroeder, Ronny (Author) / McDonald, Kyle C. (Author) / Chapman, Bruce D. (Author) / Jensen, Katherine (Author) / Podest, Erika (Author) / Tessler, Zachary D. (Author) / Bohn, Theodore (Author) / Zimmermann, Reiner (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09
128275-Thumbnail Image.png
Description

A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20  cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models,

A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20  cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million  km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.

ContributorsWang, Wenli (Author) / Rinke, Annette (Author) / Moore, John C. (Author) / Ji, Duoying (Author) / Cui, Xuefeng (Author) / Peng, Shushi (Author) / Lawrence, David M. (Author) / McGuire, A. David (Author) / Burke, Eleanor J. (Author) / Chen, Xiaodong (Author) / Decharme, Bertrand (Author) / Koven, Charles (Author) / MacDougall, Andrew (Author) / Saito, Kazuyuki (Author) / Zhang, Wenxin (Author) / Alkama, Ramdane (Author) / Bohn, Theodore (Author) / Ciais, Philippe (Author) / Delire, Christine (Author) / Gouttevin, Isabelle (Author) / Hajima, Tomohiro (Author) / Krinner, Gerhard (Author) / Lettenmaier, Dennis P. (Author) / Miller, Paul A. (Author) / Smith, Benjamin (Author) / Sueyoshi, Tetsuo (Author) / Sherstiukov, Artem B. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-11
128359-Thumbnail Image.png
Description

Course-based undergraduate research experiences (CUREs) meet national recommendations for integrating research experiences into life science curricula. As such, CUREs have grown in popularity and many research studies have focused on student outcomes from CUREs. Institutional change literature highlights that understanding faculty is also key to new pedagogies succeeding. To begin

Course-based undergraduate research experiences (CUREs) meet national recommendations for integrating research experiences into life science curricula. As such, CUREs have grown in popularity and many research studies have focused on student outcomes from CUREs. Institutional change literature highlights that understanding faculty is also key to new pedagogies succeeding. To begin to understand faculty perspectives on CUREs, we conducted semi-structured interviews with 61 faculty who teach CUREs regarding why they teach CUREs, what the outcomes are, and how they would discuss a CURE with a colleague. Using grounded theory, participant responses were coded and categorized as tangible or intangible, related to both student and faculty-centered themes. We found that intangible themes were prevalent, and that there were significant differences in the emphasis on tangible themes for faculty who have developed their own independent CUREs when compared with faculty who implement pre-developed, national CUREs. We focus our results on the similarities and differences among the perspectives of faculty who teach these two different CURE types and explore trends among all participants. The results of this work highlight the need for considering a multi-dimensional framework to understand, promote, and successfully implement CUREs.

ContributorsShortlidge, Erin (Author) / Bangera, Gita (Author) / Brownell, Sara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-26