This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 14
Filtering by

Clear all filters

128844-Thumbnail Image.png
Description

Previous empirical evaluations of training programs aimed at improving dog adoption rates assume that dogs exhibiting certain behaviors are more adoptable. However, no systematic data are available to indicate that the spontaneous behavior of shelter dogs has an effect on adopter preference. The aim of the present study was to

Previous empirical evaluations of training programs aimed at improving dog adoption rates assume that dogs exhibiting certain behaviors are more adoptable. However, no systematic data are available to indicate that the spontaneous behavior of shelter dogs has an effect on adopter preference. The aim of the present study was to determine whether any behaviors that dogs exhibit spontaneously in the presence of potential adopters were associated with the dogs' length of stay in the shelter. A sample of 289 dogs was videotaped for 1 min daily throughout their stay at a county shelter. To account for differences in adopter behavior, experimenters varied from solitary passive observers to pairs of interactive observers. Dogs behaved more attentively to active observers. To account for adopter preference for morphology, dogs were divided into “morphologically preferred” and “non-preferred” groups. Morphologically preferred dogs were small, long coated, ratters, herders, and lap dogs. No theoretically significant differences in behavior were observed between the two different dog morphologies. When accounting for morphological preference, three behaviors were found to have a significant effect on length of stay in all dogs: leaning or rubbing on the enclosure wall (increased median length of stay by 30 days), facing away from the front of the enclosure (increased by 15 days), and standing (increased by 7 days). When combinations of behaviors were assessed, back and forth motion was found to predict a longer stay (increased by 24 days). No consistent behavioral changes were observed due to time spent at the shelter. These findings will allow shelters to focus behavioral modification efforts only on behaviors likely to influence adopters' choices.

ContributorsProtopopova, Alexandra (Author) / Mehrkam, Lindsay Renee (Author) / Boggess, May (Author) / Wynne, Clive (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-31
128993-Thumbnail Image.png
Description

Background: The influence of occupation and ex/passive smoking on inflammatory phenotype is not well understood. The aim of this study was to examine the relationship between occupation, past smoking and current passive smoking and airway inflammation in a population of adults with refractory asthma.

Methods: Sixty-six participants with refractory asthma were characterized. Occupational

Background: The influence of occupation and ex/passive smoking on inflammatory phenotype is not well understood. The aim of this study was to examine the relationship between occupation, past smoking and current passive smoking and airway inflammation in a population of adults with refractory asthma.

Methods: Sixty-six participants with refractory asthma were characterized. Occupational exposure to asthma causing or worsening agents were identified with an asthma-specific job exposure matrix. Exposure to passive cigarette smoke was determined by questionnaire and exhaled carbon monoxide assessment. The carbon content of macrophages was assessed in a sub-group of participants.

Results: Nineteen participants had smoked previously with low smoking pack years (median 1.7 years). Ex-smokers more commonly lived with a current smoker (26% vs. 9%, p = 0.11) and were more likely to allow smoking inside their home (26% vs. 4%, p = 0.02) compared to never smokers. Twenty participants had occupations with an identified exposure risk to an asthmagen; thirteen had exposures to irritants such as motor vehicle exhaust and environmental tobacco smoke. Sputum neutrophils were elevated in participants with asthma who had occupational exposures, particularly those who were diagnosed with asthma at a more than 30 years of age.

Conclusions: Sputum neutrophils are elevated in refractory asthma with exposure to occupational asthmagens. In addition to older age, exposure to both environmental and occupational particulate matter may contribute to the presence of neutrophilic asthma. This may help explain asthma heterogeneity and geographical variations in airway inflammatory phenotypes in asthma.

ContributorsSimpson, Jodie L. (Author) / Guest, Maya (Author) / Boggess, May (Author) / Gibson, Peter G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-19
129266-Thumbnail Image.png
Description

Adult diet quality indices are shown to predict nutritional adequacy of dietary intake as well as all-cause morbidity and mortality. This study describes the reproducibility and validity of a food-based diet quality index, the Australian Recommended Food Score (ARFS). ARFS was developed to reflect alignment with the Australian Dietary Guidelines

Adult diet quality indices are shown to predict nutritional adequacy of dietary intake as well as all-cause morbidity and mortality. This study describes the reproducibility and validity of a food-based diet quality index, the Australian Recommended Food Score (ARFS). ARFS was developed to reflect alignment with the Australian Dietary Guidelines and is modelled on the US Recommended Food Score. Dietary intakes of 96 adult participants (31 male, 65 female) age 30 to 75 years were assessed in two rounds, five months apart. Diet was assessed using a 120-question semi-quantitative food frequency questionnaire (FFQ). The ARFS diet quality index was derived using a subset of 70 items from the full FFQ. Reproducibility of the ARFS between round one and round two was confirmed by the overall intraclass correlation coefficient of 0.87 (95% CI 0.83, 0.90), which compared favourably to that for the FFQ at 0.85 (95% CI 0.80, 0.89). ARFS was correlated with FFQ nutrient intakes, particularly fiber, vitamin A, beta-carotene and vitamin C (0.53, 95% CI 0.37–0.67), and with mineral intakes, particularly calcium, magnesium and potassium (0.32, 95% CI 0.23–0.40). ARFS is a suitable brief tool to evaluate diet quality in adults and reliably estimates a range of nutrient intakes.

ContributorsCollins, Clare E. (Author) / Burrows, Tracy L. (Author) / Rollo, Megan E. (Author) / Boggess, May (Author) / Watson, Jane F. (Author) / Guest, Maya (Author) / Duncanson, Kerith (Author) / Pezdirc, Kristine (Author) / Hutchesson, Melinda J. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-01
128948-Thumbnail Image.png
Description

Background: Diet quality tools provide researchers with brief methods to assess the nutrient adequacy of usual dietary intake. This study describes the development and validation of a pediatric diet quality index, the Australian Recommended Food Scores for Pre-schoolers (ARFS-P), for use with children aged two to five years.

Methods: The ARFS-P was

Background: Diet quality tools provide researchers with brief methods to assess the nutrient adequacy of usual dietary intake. This study describes the development and validation of a pediatric diet quality index, the Australian Recommended Food Scores for Pre-schoolers (ARFS-P), for use with children aged two to five years.

Methods: The ARFS-P was derived from a 120-item food frequency questionnaire, with eight sub-scales, and was scored from zero to 73. Linear regressions were used to estimate the relationship between diet quality score and nutrient intakes, in 142 children (mean age 4 years) in rural localities in New South Wales, Australia.

Results: Total ARFS-P and component scores were highly related to dietary intake of the majority of macronutrients and micronutrients including protein, β-carotene, vitamin C, vitamin A. Total ARFS-P was also positively related to total consumption of nutrient dense foods, such as fruits and vegetables, and negatively related to total consumption of discretionary choices, such as sugar sweetened drinks and packaged snacks.

Conclusion: ARFS-P is a valid measure that can be used to characterize nutrient intakes for children aged two to five years. Further research could assess the utility of the ARFS-P for monitoring of usual dietary intake over time or as part of clinical management.

ContributorsBurrows, Tracy L. (Author) / Collins, Kate (Author) / Watson, Jane (Author) / Guest, Maya (Author) / Boggess, May (Author) / Neve, Melinda (Author) / Rollo, Megan (Author) / Duncanson, Kerith (Author) / Collins, Clare E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-29
128926-Thumbnail Image.png
Description

Background: Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated.

Methodology/Principal Findings: Here we exploit the simplicity of the nematode Caenorhabditis elegans to

Background: Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated.

Methodology/Principal Findings: Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male’s decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite’s surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells.

Conclusion/Significance: Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation.

ContributorsSherlekar, Amrita L. (Author) / Janssen, Abbey (Author) / Siehr, Meagan S. (Author) / Koo, Pamela K. (Author) / Caflisch, Laura (Author) / Boggess, May (Author) / Lints, Robyn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-04-05
129403-Thumbnail Image.png
Description

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters,

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

ContributorsKrohn, K. (Author) / Jaumann, R. (Author) / Otto, K. (Author) / Hoogenboom, T. (Author) / Wagner, R. (Author) / Buczkowski, D. L. (Author) / Garry, B. (Author) / Williams, David (Author) / Yingst, R. A. (Author) / Scully, J. (Author) / De Sanctis, M. C. (Author) / Kneissl, T. (Author) / Schmedemann, N. (Author) / Kersten, E. (Author) / Stephan, K. (Author) / Matz, K-D. (Author) / Pieters, C. M. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Schenk, P. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129402-Thumbnail Image.png
Description

A variety of geologic landforms and features are observed within quadrangle Av-13 Tuccia in the southern hemisphere of Vesta. The quadrangle covers parts of the highland Vestalia Terra as well as the floors of the large Rheasilvia and Veneneia impact basins, which results in a substantial elevation difference of more

A variety of geologic landforms and features are observed within quadrangle Av-13 Tuccia in the southern hemisphere of Vesta. The quadrangle covers parts of the highland Vestalia Terra as well as the floors of the large Rheasilvia and Veneneia impact basins, which results in a substantial elevation difference of more than 40 km between the northern and the southern portions of the quadrangle. Measurements of crater size–frequency distributions within and surrounding the Rheasilvia basin indicate that gravity-driven mass wasting in the interior of the basin has been important, and that the basin has a more ancient formation age than would be expected from the crater density on the basin floor alone. Subsequent to its formation, Rheasilvia was superimposed by several mid-sized impact craters. The most prominent craters are Tuccia, Eusebia, Vibidia, Galeria, and Antonia, whose geology and formation ages are investigated in detail in this work. These impact structures provide a variety of morphologies indicating different sorts of subsequent impact-related or gravity-driven mass wasting processes. Understanding the geologic history of the relatively young craters in the Rheasilvia basin is important in order to understand the even more degraded craters in other regions of Vesta.

ContributorsKneissl, T. (Author) / Schmedemann, N. (Author) / Reddy, V. (Author) / Williams, David (Author) / Walter, S. H. G. (Author) / Neesemann, A. (Author) / Michael, G. G. (Author) / Jaumann, R. (Author) / Krohn, K. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Le Corre, L. (Author) / Nathues, A. (Author) / Hoffmann, M. (Author) / Schaefer, M. (Author) / Buczkowski, D. (Author) / Garry, W. B. (Author) / Yingst, R. A. (Author) / Mest, S. C. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129398-Thumbnail Image.png
Description

In this paper we present a time-stratigraphic scheme and geologic time scale for the protoplanet Vesta, based on global geologic mapping and other analyses of NASA Dawn spacecraft data, complemented by insights gained from laboratory studies of howardite–eucrite–diogenite (HED) meteorites and geophysical modeling. On the basis of prominent impact structures

In this paper we present a time-stratigraphic scheme and geologic time scale for the protoplanet Vesta, based on global geologic mapping and other analyses of NASA Dawn spacecraft data, complemented by insights gained from laboratory studies of howardite–eucrite–diogenite (HED) meteorites and geophysical modeling. On the basis of prominent impact structures and their associated deposits, we propose a time scale for Vesta that consists of four geologic time periods: Pre-Veneneian, Veneneian, Rheasilvian, and Marcian. The Pre-Veneneian Period covers the time from the formation of Vesta up to the Veneneia impact event, from 4.6 Ga to >2.1 Ga (using the asteroid flux-derived chronology system) or from 4.6 Ga to 3.7 Ga (under the lunar-derived chronology system). The Veneneian Period covers the time span between the Veneneia and Rheasilvia impact events, from >2.1 to 1 Ga (asteroid flux-derived chronology) or from 3.7 to 3.5 Ga (lunar-derived chronology), respectively. The Rheasilvian Period covers the time span between the Rheasilvia and Marcia impact events, and the Marcian Period covers the time between the Marcia impact event until the present. The age of the Marcia impact is still uncertain, but our current best estimates from crater counts of the ejecta blanket suggest an age between ∼120 and 390 Ma, depending upon choice of chronology system used. Regardless, the Marcia impact represents the youngest major geologic event on Vesta. Our proposed four-period geologic time scale for Vesta is, to a first order, comparable to those developed for other airless terrestrial bodies.

ContributorsWilliams, David (Author) / Jaumann, R. (Author) / McSween, H. Y. (Author) / Marchi, S. (Author) / Schmedemann, N. (Author) / Raymond, C. A. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129396-Thumbnail Image.png
Description

We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft’s High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta

We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft’s High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn’s arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound.

However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta’s geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits.

Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

ContributorsYingst, R. A. (Author) / Mest, S. C. (Author) / Berman, D. C. (Author) / Garry, W. B. (Author) / Williams, David (Author) / Buczkowski, D. (Author) / Jaumann, R. (Author) / Pieters, C. M. (Author) / De Sanctis, M. C. (Author) / Frigeri, A. (Author) / Le Corre, L. (Author) / Preusker, F. (Author) / Raymond, C. A. (Author) / Reddy, V. (Author) / Russell, C. T. (Author) / Roatsch, T. (Author) / Schenk, P. M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-15
129395-Thumbnail Image.png
Description

Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta’s low surface gravity (0.25 m/s2) has led to the continual absence of a

Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta’s low surface gravity (0.25 m/s2) has led to the continual absence of a protective atmosphere and consequently impact cratering and impact-related processes are prevalent. Previous work has shown that the formation of the Rheasilvia impact basin induced the equatorial Divalia Fossae, whereas the formation of the Veneneia impact basin induced the northern Saturnalia Fossae. Expanding upon this earlier work, we conducted photogeologic mapping of the Saturnalia Fossae, adjacent structures and geomorphic units in two of Vesta’s northern quadrangles: Caparronia and Domitia. Our work indicates that impact processes created and/or modified all mapped structures and geomorphic units. The mapped units, ordered from oldest to youngest age based mainly on cross-cutting relationships, are: (1) Vestalia Terra unit, (2) cratered highlands unit, (3) Saturnalia Fossae trough unit, (4) Saturnalia Fossae cratered unit, (5) undifferentiated ejecta unit, (6) dark lobate unit, (7) dark crater ray unit and (8) lobate crater unit. The Saturnalia Fossae consist of five separate structures: Saturnalia Fossa A is the largest (maximum width of ∼43 km) and is interpreted as a graben, whereas Saturnalia Fossa B-E are smaller (maximum width of ∼15 km) and are interpreted as half grabens formed by synthetic faults. Smaller, second-order structures (maximum width of <1 km) are distinguished from the Saturnalia Fossae, a first-order structure, by the use of the general descriptive term ‘adjacent structures’, which encompasses minor ridges, grooves and crater chains. For classification purposes, the general descriptive term ‘minor ridges’ characterizes ridges that are not part of the Saturnalia Fossae and are an order of magnitude smaller (maximum width of <1 km vs. maximum width of ∼43 km). Shear deformation resulting from the large-scale (diameter of <100 km) Rheasilvia impact is proposed to form minor ridges (∼2 km to ∼25 km in length), which are interpreted as the surface expression of thrust faults, as well as grooves (∼3 km to ∼25 km in length) and pit crater chains (∼1 km to ∼25 km in length), which are interpreted as the surface expression of extension fractures and/or dilational normal faults. Secondary crater material, ejected from small-scale and medium-scale impacts (diameters of <100 km), are interpreted to form ejecta ray systems of grooves and crater chains by bouncing and scouring across the surface. Furthermore, seismic shaking, also resulting from small-scale and medium-scale impacts, is interpreted to form minor ridges because seismic shaking induces flow of regolith, which subsequently accumulates as minor ridges that are roughly parallel to the regional slope. In this work we expand upon the link between impact processes and structural features on Vesta by presenting findings of a photogeologic, structural mapping study which highlights how impact cratering and impact-related processes are expressed on this unique, intermediate Solar System body.

ContributorsScully, Jennifer E. C. (Author) / Yin, A. (Author) / Russell, C. T. (Author) / Buczkowski, D. L. (Author) / Williams, David (Author) / Blewett, D. T. (Author) / Ruesch, O. (Author) / Hiesinger, H. (Author) / Le Corre, L. (Author) / Mercer, Cameron (Author) / Yingst, R. A. (Author) / Garry, W. B. (Author) / Jaumann, R. (Author) / Roatsch, T. (Author) / Preusker, F. (Author) / Gaskell, R.W. (Author) / Schroder, S.E. (Author) / Ammannito, E. (Author) / Pieters, C. M. (Author) / Raymond, C. A. (Author) / DREAM 9 AML-OPC Consortium (Contributor)
Created2014-01-29