This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
169359-Thumbnail Image.png
Description

In-process laser heating technique delivers a cost-efficient way to improve mechanical and geometrical properties to nearly isotropic and extremely smooth, respectively. The technique involves the incorperation of a solid-state laser into a commercial off-the-shelf 3D printer, mechanical system to allow controllable laser allumination on desired surfaces, and a gcode postprocesser

In-process laser heating technique delivers a cost-efficient way to improve mechanical and geometrical properties to nearly isotropic and extremely smooth, respectively. The technique involves the incorperation of a solid-state laser into a commercial off-the-shelf 3D printer, mechanical system to allow controllable laser allumination on desired surfaces, and a gcode postprocesser to proper control of the mechanical system. This process uses laser for local heating, to enhance mass transfer between boundaries or to enhance surface reflow to smooth surface irregularity, to improve mechanical and geometrical properties. Only less than 3 W of laser power (CO2 laser) was used for high temperature material like PEEK and Ultem; less than 1 W (808nm laser) was found to be sufficient for achieving optimal properties for PLA. This technique has the potential for after-market integration into most commercial FFF 3D printers to achieved nearly isotropic and smooth 3D printed objects with various thermoplastic polymers.

ContributorsHan, Pu (Author) / Zhang, Sihan (Author) / Hsu, Keng H. (Author)
Created2022-06-13