This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12
128104-Thumbnail Image.png
Description

Hundreds of thousands of archaeological investigations in the United States conducted over the last several decades have documented a large portion of the recovered archaeological record in the United States. However, if we are to use this enormous corpus to achieve richer understandings of the past, it is essential that

Hundreds of thousands of archaeological investigations in the United States conducted over the last several decades have documented a large portion of the recovered archaeological record in the United States. However, if we are to use this enormous corpus to achieve richer understandings of the past, it is essential that both CRM and academic archaeologists change how they manage their digital documents and data over the course of a project and how this information is preserved for future use. We explore the nature and scope of the problem and describe how it can be addressed. In particular, we argue that project workflows must ensure that the documents and data are fully documented and deposited in a publicly accessible, digital repository where they can be discovered, accessed, and reused to enable new insights and build cumulative knowledge.

Cientos de miles de investigaciones arqueológicas en los Estados Unidos realizado en las últimas décadas han documentado una gran parte del registro arqueológico recuperado en los Estados Unidos. Sin embargo, si vamos a utilizar este enorme corpus para lograr entendimientos más ricos del pasado, es esencial que CRM y los arqueólogos académicos cambian cómo administran sus documentos digitales y los datos en el transcurso de un proyecto y cómo se conserva esta información para uso en el futuro. Exploramos la naturaleza y el alcance del problema y describimos cómo se pueden abordarse. En particular, sostenemos que los flujos de trabajo de proyecto deben asegurarse que los documentos y datos son totalmente documentados y depositados en un repositorio digital de acceso público, donde puede ser descubiertos, acceder y reutilizados para activar nuevos conocimientos y construir conocimiento acumulativo.

ContributorsMcManamon, Francis P. (Author) / Kintigh, Keith W. (Author) / Ellison, Leigh Anne (Author) / Brin, Adam (Author)
Created2017-08