This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

187989-Thumbnail Image.png
Description

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces installed on building roofs and walls. Use of cool surfaces

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces installed on building roofs and walls. Use of cool surfaces is a cost-effective and simple strategy that replaces conventional darker surfaces with surfaces that have a high reflectance to shortwave (solar) energy.

This report reviews the recent history of cool-surface deployment efforts. This includes peer-reviewed literature, conference proceedings, and grey literature to identify challenges and barriers to wide-scale deployment of cool surfaces. We have also researched heat action plans and programs from cities and different codes and standards, as well as available incentive and rebate programs.

The review identifies challenges, barriers, and opportunities associated with large-scale deployment of cool surfaces and categorizes them broadly as being related to product development & performance or policies & mandates. It provides a foundation upon which we intend to build a roadmap for rapidly accelerating future deployments of cool surfaces. This roadmap will address identified challenges and incorporate lessons learned from historical efforts to generate a practical and actionable plan.

ContributorsAlhazmi, Mansour (Author) / Sailor, David (Author) / Levinson, Ronnen (Author)
Created2023-05-24
170654-Thumbnail Image.jpg
Description

Urea is an added value chemical with wide applications in the industry and agriculture. The release of urea waste to the environment affects ecosystem health despite its low toxicity. Online monitoring of urea for industrial applications and environmental health is an unaddressed challenge. Electroanalytical techniques can be a smart integrated

Urea is an added value chemical with wide applications in the industry and agriculture. The release of urea waste to the environment affects ecosystem health despite its low toxicity. Online monitoring of urea for industrial applications and environmental health is an unaddressed challenge. Electroanalytical techniques can be a smart integrated solution for online monitoring if sensors can overcome the major barrier associated with long-term stability. Mixed metal oxides have shown excellent stability in environmental conditions with long lasting operational lives. However, these materials have been barely explored for sensing applications. This work presents a proof of concept that demonstrates the applicability of an indirect electroanalytical quantification method of urea. The use of Ti/RuO2-TiO2-SnO2 dimensional stable anode (DSA®) can provide accurate and sensitive quantification of urea in aqueous samples exploiting the excellent catalytic properties of DSA® on the electrogeneration of active chlorine species. The cathodic reduction of accumulated HClO/ClO− from anodic electrogeneration presented a direct relationship with urea concentration. This novel method can allow urea quantification with a competitive LOD of 1.83 × 10−6 mol L−1 within a linear range of 6.66 × 10−6 to 3.33 × 10−4 mol L−1 of urea concentration.

Created2021-05-15
128104-Thumbnail Image.png
Description

Hundreds of thousands of archaeological investigations in the United States conducted over the last several decades have documented a large portion of the recovered archaeological record in the United States. However, if we are to use this enormous corpus to achieve richer understandings of the past, it is essential that

Hundreds of thousands of archaeological investigations in the United States conducted over the last several decades have documented a large portion of the recovered archaeological record in the United States. However, if we are to use this enormous corpus to achieve richer understandings of the past, it is essential that both CRM and academic archaeologists change how they manage their digital documents and data over the course of a project and how this information is preserved for future use. We explore the nature and scope of the problem and describe how it can be addressed. In particular, we argue that project workflows must ensure that the documents and data are fully documented and deposited in a publicly accessible, digital repository where they can be discovered, accessed, and reused to enable new insights and build cumulative knowledge.

Cientos de miles de investigaciones arqueológicas en los Estados Unidos realizado en las últimas décadas han documentado una gran parte del registro arqueológico recuperado en los Estados Unidos. Sin embargo, si vamos a utilizar este enorme corpus para lograr entendimientos más ricos del pasado, es esencial que CRM y los arqueólogos académicos cambian cómo administran sus documentos digitales y los datos en el transcurso de un proyecto y cómo se conserva esta información para uso en el futuro. Exploramos la naturaleza y el alcance del problema y describimos cómo se pueden abordarse. En particular, sostenemos que los flujos de trabajo de proyecto deben asegurarse que los documentos y datos son totalmente documentados y depositados en un repositorio digital de acceso público, donde puede ser descubiertos, acceder y reutilizados para activar nuevos conocimientos y construir conocimiento acumulativo.

ContributorsMcManamon, Francis P. (Author) / Kintigh, Keith W. (Author) / Ellison, Leigh Anne (Author) / Brin, Adam (Author)
Created2017-08