This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

170654-Thumbnail Image.jpg
Description

Urea is an added value chemical with wide applications in the industry and agriculture. The release of urea waste to the environment affects ecosystem health despite its low toxicity. Online monitoring of urea for industrial applications and environmental health is an unaddressed challenge. Electroanalytical techniques can be a smart integrated

Urea is an added value chemical with wide applications in the industry and agriculture. The release of urea waste to the environment affects ecosystem health despite its low toxicity. Online monitoring of urea for industrial applications and environmental health is an unaddressed challenge. Electroanalytical techniques can be a smart integrated solution for online monitoring if sensors can overcome the major barrier associated with long-term stability. Mixed metal oxides have shown excellent stability in environmental conditions with long lasting operational lives. However, these materials have been barely explored for sensing applications. This work presents a proof of concept that demonstrates the applicability of an indirect electroanalytical quantification method of urea. The use of Ti/RuO2-TiO2-SnO2 dimensional stable anode (DSA®) can provide accurate and sensitive quantification of urea in aqueous samples exploiting the excellent catalytic properties of DSA® on the electrogeneration of active chlorine species. The cathodic reduction of accumulated HClO/ClO− from anodic electrogeneration presented a direct relationship with urea concentration. This novel method can allow urea quantification with a competitive LOD of 1.83 × 10−6 mol L−1 within a linear range of 6.66 × 10−6 to 3.33 × 10−4 mol L−1 of urea concentration.

Created2021-05-15
127818-Thumbnail Image.png
Description

This chapter is not a guide to embodied thinking, but rather a critical call to action. It highlights the deep history of embodied practice within the fields of dance and somatics, and outlines the value of embodied thinking within human-computer interaction (HCI) design and, more specifically, wearable technology (WT) design.

This chapter is not a guide to embodied thinking, but rather a critical call to action. It highlights the deep history of embodied practice within the fields of dance and somatics, and outlines the value of embodied thinking within human-computer interaction (HCI) design and, more specifically, wearable technology (WT) design. What this chapter does not do is provide a guide or framework for embodied practice. As a practitioner and scholar grounded in the fields of dance and somatics, I argue that a guide to embodiment cannot be written in a book. To fully understand embodied thinking, one must act, move, and do. Terms such as embodiment and embodied thinking are often discussed and analyzed in writing; but if the purpose is to learn how to engage in embodied thinking, then the answers will not come from a text. The answers come from movement-based exploration, active trial-and-error, and improvisation practices crafted to cultivate physical attunement to one's own body. To this end, my "call to action" is for the reader to move beyond a text-based understanding of embodiment to active engagement in embodied methodologies. Only then, I argue, can one understand how to apply embodied thinking to a design process.

ContributorsRajko, Jessica (Author)
Created2018
127815-Thumbnail Image.png
Description

Successful public transit systems increase the value of locations they serve. Capturing this location value to help fund transit is often sensible, but challenging. This article defines location value capture, and synthesizes lessons learned from six European and North American transit agencies that have experience with location value capture funding.

Successful public transit systems increase the value of locations they serve. Capturing this location value to help fund transit is often sensible, but challenging. This article defines location value capture, and synthesizes lessons learned from six European and North American transit agencies that have experience with location value capture funding. The opportunities for and barriers to implementing location value capture fall into three categories: agency institutional authority, agency organizational mission, and public support for transit. When any of these factors is incompatible with a location value capture strategy, implementation becomes difficult. In four of the cases studied, dramatic institutional change was critical for success. In five cases, acute crisis was a catalyst for institutional change, value capture implementation, or both. Using value capture strategies to fund transit requires practitioners to both understand agency organizational constraints, and to view transit agencies as institutions that can transform in response to changing situations.

ContributorsSalon, Deborah (Author) / Sclar, Elliott (Author) / Barone, Richard (Author)
Created2017-05-12