This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

127812-Thumbnail Image.png
Description

As speculative aesthetics, what might feminist ontologies and artist imaginings do for rethinking the "real" assemblages and infrastructures of our quotidian experience, particularly with respect to those that standardize aggressive capital agendas, maximum industrial output and extreme waste? This paper draws connections between female artists' image and event-making, speculative design

As speculative aesthetics, what might feminist ontologies and artist imaginings do for rethinking the "real" assemblages and infrastructures of our quotidian experience, particularly with respect to those that standardize aggressive capital agendas, maximum industrial output and extreme waste? This paper draws connections between female artists' image and event-making, speculative design and tacit knowledge, as sensing tools for technological possibilities at a time when energy dependency, in the form of electricity, is the greatest generator of fossil fuel waste and pollution. I use Remedios Varo's paintings from the mid 1930-1960s as a springboard to think about sustainability and ecological design from an embodied, fem-magic and deep-time perspective, and I draw from other female artists whose work explores technologies and energy, such as Alice Aycock, Tania Candiani, Cassie Meador and Hito Steyerl. An analysis of these artists' works allows me to explore the ways that feminist imaginings function as an ontological orientation that shifts power away from contemporary infrastructures, to decolonize and re-feminize electrical possibilities as alternative ways of engaging with and sensing assemblages.

ContributorsFoster Gluck, Geneva (Artist, Author)
Created2019-03-12
128965-Thumbnail Image.png
Description

Tikhonov regularization for projected solutions of large-scale ill-posed problems is considered. The Golub{Kahan iterative bidiagonalization is used to project the problem onto a subspace and regularization then applied to nd a subspace approximation to the full problem. Determination of the regularization, parameter for the projected problem by unbiased predictive risk

Tikhonov regularization for projected solutions of large-scale ill-posed problems is considered. The Golub{Kahan iterative bidiagonalization is used to project the problem onto a subspace and regularization then applied to nd a subspace approximation to the full problem. Determination of the regularization, parameter for the projected problem by unbiased predictive risk estimation, generalized cross validation, and discrepancy principle techniques is investigated. It is shown that the regularized parameter obtained by the unbiased predictive risk estimator can provide a good estimate which can be used for a full problem that is moderately to severely ill-posed. A similar analysis provides the weight parameter for the weighted generalized cross validation such that the approach is also useful in these cases, and also explains why the generalized cross validation without weighting is not always useful. All results are independent of whether systems are over- or underdetermined. Numerical simulations for standard one-dimensional test problems and two- dimensional data, for both image restoration and tomographic image reconstruction, support the analysis and validate the techniques. The size of the projected problem is found using an extension of a noise revealing function for the projected problem [I. Hn etynkov a, M. Ple singer, and Z. Strako s, BIT Numer. Math., 49 (2009), pp. 669{696]. Furthermore, an iteratively reweighted regularization approach for edge preserving regularization is extended for projected systems, providing stabilization of the solutions of the projected systems and reducing dependence on the determination of the size of the projected subspace.

ContributorsRenaut, Rosemary (Author)
Created2017-03-08