This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Description

These videos depict two miscible liquids with different densities and viscosities coming into contact. This study explores how a swellable test pad can be deployed for measuring urea in saliva by partially prefilling the pad with a miscible solution of greater viscosity and density. The resultant Korteweg stresses and viscous

These videos depict two miscible liquids with different densities and viscosities coming into contact. This study explores how a swellable test pad can be deployed for measuring urea in saliva by partially prefilling the pad with a miscible solution of greater viscosity and density. The resultant Korteweg stresses and viscous fingering patterns are analyzed using solutions with added food color through video analysis and image processing. Image analysis is simplified using the saturation channel after converting RGB image sequences to HSB. These videos are conjunction to an article submission to MDPI Bioengineering journal as supplementary files to enhance the breadth and depth of the content therein.

ContributorsClingan, H. (Author) / Rusk, D. (Author) / Smith, K. (Author) / Garcia, A. (Author)
Created2018-03-15
169359-Thumbnail Image.png
Description

In-process laser heating technique delivers a cost-efficient way to improve mechanical and geometrical properties to nearly isotropic and extremely smooth, respectively. The technique involves the incorperation of a solid-state laser into a commercial off-the-shelf 3D printer, mechanical system to allow controllable laser allumination on desired surfaces, and a gcode postprocesser

In-process laser heating technique delivers a cost-efficient way to improve mechanical and geometrical properties to nearly isotropic and extremely smooth, respectively. The technique involves the incorperation of a solid-state laser into a commercial off-the-shelf 3D printer, mechanical system to allow controllable laser allumination on desired surfaces, and a gcode postprocesser to proper control of the mechanical system. This process uses laser for local heating, to enhance mass transfer between boundaries or to enhance surface reflow to smooth surface irregularity, to improve mechanical and geometrical properties. Only less than 3 W of laser power (CO2 laser) was used for high temperature material like PEEK and Ultem; less than 1 W (808nm laser) was found to be sufficient for achieving optimal properties for PLA. This technique has the potential for after-market integration into most commercial FFF 3D printers to achieved nearly isotropic and smooth 3D printed objects with various thermoplastic polymers.

ContributorsHan, Pu (Author) / Zhang, Sihan (Author) / Hsu, Keng H. (Author)
Created2022-06-13
127808-Thumbnail Image.png
Description

Students in Organic Chemistry for Majors were required to write a paper as the culminating course assignment. Prior to completing this assignment, students could attend a library instruction session covering relevant databases and resources. Upon submission of their papers, bibliographies from 53 students were collected. Calculations were made to attempt

Students in Organic Chemistry for Majors were required to write a paper as the culminating course assignment. Prior to completing this assignment, students could attend a library instruction session covering relevant databases and resources. Upon submission of their papers, bibliographies from 53 students were collected. Calculations were made to attempt a holistic account of costs associated with completing the assignment. Factors such as the cost of journals, databases, and librarian time were all included in the overall cost estimate, totalling $7,189.22 for this single assignment.

ContributorsKromer, John (Author)
Created2019-07-02