This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02
Modeling and leveraging intuitive theories to improve vaccine attitudes
Description

Much of the richness of human thought is supported by people’s intuitive theories—mental frameworks capturing the perceived structure of the world. But intuitive theories can sometimes contain and reinforce misconceptions, such as misconceptions about vaccine safety that discourage vaccination. We argue that addressing misconceptions requires awareness of the broader conceptual

Much of the richness of human thought is supported by people’s intuitive theories—mental frameworks capturing the perceived structure of the world. But intuitive theories can sometimes contain and reinforce misconceptions, such as misconceptions about vaccine safety that discourage vaccination. We argue that addressing misconceptions requires awareness of the broader conceptual contexts in which they are embedded. Here, we developed a cognitive model of the intuitive theory surrounding vaccination decisions. Using this model, we were able to make accurate predictions about how people’s beliefs would be revised in light of educational interventions, design an effective new intervention encouraging vaccination, and understand how these beliefs were affected by real-world events. This approach provides the foundation for richer understandings of intuitive theories and belief revision more broadly.

ContributorsPowell, Derek (Author) / Weisman, Kara (Author) / Markman, Ellen M. (Author)
Created2021