This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

187989-Thumbnail Image.png
Description

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces installed on building roofs and walls. Use of cool surfaces

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces installed on building roofs and walls. Use of cool surfaces is a cost-effective and simple strategy that replaces conventional darker surfaces with surfaces that have a high reflectance to shortwave (solar) energy.

This report reviews the recent history of cool-surface deployment efforts. This includes peer-reviewed literature, conference proceedings, and grey literature to identify challenges and barriers to wide-scale deployment of cool surfaces. We have also researched heat action plans and programs from cities and different codes and standards, as well as available incentive and rebate programs.

The review identifies challenges, barriers, and opportunities associated with large-scale deployment of cool surfaces and categorizes them broadly as being related to product development & performance or policies & mandates. It provides a foundation upon which we intend to build a roadmap for rapidly accelerating future deployments of cool surfaces. This roadmap will address identified challenges and incorporate lessons learned from historical efforts to generate a practical and actionable plan.

ContributorsAlhazmi, Mansour (Author) / Sailor, David (Author) / Levinson, Ronnen (Author)
Created2023-05-24
127819-Thumbnail Image.png
Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center.

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

ContributorsWithycombe Keeler, Lauren (Researcher) / Halden, Rolf (Researcher) / Selin, Cynthia (Researcher) / Center for Nanotechnology in Society (Contributor)
Created2015-11-01
127808-Thumbnail Image.png
Description

Students in Organic Chemistry for Majors were required to write a paper as the culminating course assignment. Prior to completing this assignment, students could attend a library instruction session covering relevant databases and resources. Upon submission of their papers, bibliographies from 53 students were collected. Calculations were made to attempt

Students in Organic Chemistry for Majors were required to write a paper as the culminating course assignment. Prior to completing this assignment, students could attend a library instruction session covering relevant databases and resources. Upon submission of their papers, bibliographies from 53 students were collected. Calculations were made to attempt a holistic account of costs associated with completing the assignment. Factors such as the cost of journals, databases, and librarian time were all included in the overall cost estimate, totalling $7,189.22 for this single assignment.

ContributorsKromer, John (Author)
Created2019-07-02