This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
191218-Thumbnail Image.png
Description
Cybersecurity and research do not have to be opposed to each other. With increasing cyberattacks, it is more important than ever for cybersecurity and research to corporate. The authors describe how Research Liaisons and Information Assurance: Michigan Medicine (IA:MM) collaborate at Michigan Medicine, an academic medical center subject to strict

Cybersecurity and research do not have to be opposed to each other. With increasing cyberattacks, it is more important than ever for cybersecurity and research to corporate. The authors describe how Research Liaisons and Information Assurance: Michigan Medicine (IA:MM) collaborate at Michigan Medicine, an academic medical center subject to strict HIPAA controls and frequent risk assess- ments. IA:MM provides its own Liaison to work with the Research Liaisons to better understand security process and guide researchers through the process. IA:MM has developed formal risk decision processes and informal engagements with the CISO to provide risk- based cybersecurity instead of controls-based. This collaboration has helped develop mitigating procedures for researchers when standard controls are not feasible.
ContributorsMcCaffrey, Deb (Author) / Kelley, Jessica (Author)
Created2022-07-14
129704-Thumbnail Image.png
Description

Pay-for-performance (PFP) is a relatively new approach to agricultural conservation that attaches an incentive payment to quantified reductions in nutrient runoff from a participating farm. Similar to a payment for ecosystem services approach, PFP lends itself to providing incentives for the most beneficial practices at the field level. To date,

Pay-for-performance (PFP) is a relatively new approach to agricultural conservation that attaches an incentive payment to quantified reductions in nutrient runoff from a participating farm. Similar to a payment for ecosystem services approach, PFP lends itself to providing incentives for the most beneficial practices at the field level. To date, PFP conservation in the U.S. has only been applied in small pilot programs. Because monitoring conservation performance for each field enrolled in a program would be cost-prohibitive, field-level modeling can provide cost-effective estimates of anticipated improvements in nutrient runoff. We developed a PFP system that uses a unique application of one of the leading agricultural models, the USDA's Soil and Water Assessment Tool, to evaluate the nutrient load reductions of potential farm practice changes based on field-level agronomic and management data. The initial phase of the project focused on simulating individual fields in the River Raisin watershed in southeastern Michigan. Here we present development of the modeling approach and results from the pilot year, 2015-2016. These results stress that (1) there is variability in practice effectiveness both within and between farms, and thus there is not one "best practice" for all farms, (2) conservation decisions are made most effectively at the scale of the farm field rather than the sub-watershed or watershed level, and (3) detailed, field-level management information is needed to accurately model and manage on-farm nutrient loadings.

ContributorsMuenich, Rebecca (Author) / Kalcic, M. M. (Author) / Winsten, J. (Author) / Fisher, K. (Author) / Day, M. (Author) / O'Neil, G. (Author) / Wang, Y.-C. (Author) / Scavia, D. (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017