This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
127815-Thumbnail Image.png
Description

Successful public transit systems increase the value of locations they serve. Capturing this location value to help fund transit is often sensible, but challenging. This article defines location value capture, and synthesizes lessons learned from six European and North American transit agencies that have experience with location value capture funding.

Successful public transit systems increase the value of locations they serve. Capturing this location value to help fund transit is often sensible, but challenging. This article defines location value capture, and synthesizes lessons learned from six European and North American transit agencies that have experience with location value capture funding. The opportunities for and barriers to implementing location value capture fall into three categories: agency institutional authority, agency organizational mission, and public support for transit. When any of these factors is incompatible with a location value capture strategy, implementation becomes difficult. In four of the cases studied, dramatic institutional change was critical for success. In five cases, acute crisis was a catalyst for institutional change, value capture implementation, or both. Using value capture strategies to fund transit requires practitioners to both understand agency organizational constraints, and to view transit agencies as institutions that can transform in response to changing situations.

ContributorsSalon, Deborah (Author) / Sclar, Elliott (Author) / Barone, Richard (Author)
Created2017-05-12
129704-Thumbnail Image.png
Description

Pay-for-performance (PFP) is a relatively new approach to agricultural conservation that attaches an incentive payment to quantified reductions in nutrient runoff from a participating farm. Similar to a payment for ecosystem services approach, PFP lends itself to providing incentives for the most beneficial practices at the field level. To date,

Pay-for-performance (PFP) is a relatively new approach to agricultural conservation that attaches an incentive payment to quantified reductions in nutrient runoff from a participating farm. Similar to a payment for ecosystem services approach, PFP lends itself to providing incentives for the most beneficial practices at the field level. To date, PFP conservation in the U.S. has only been applied in small pilot programs. Because monitoring conservation performance for each field enrolled in a program would be cost-prohibitive, field-level modeling can provide cost-effective estimates of anticipated improvements in nutrient runoff. We developed a PFP system that uses a unique application of one of the leading agricultural models, the USDA's Soil and Water Assessment Tool, to evaluate the nutrient load reductions of potential farm practice changes based on field-level agronomic and management data. The initial phase of the project focused on simulating individual fields in the River Raisin watershed in southeastern Michigan. Here we present development of the modeling approach and results from the pilot year, 2015-2016. These results stress that (1) there is variability in practice effectiveness both within and between farms, and thus there is not one "best practice" for all farms, (2) conservation decisions are made most effectively at the scale of the farm field rather than the sub-watershed or watershed level, and (3) detailed, field-level management information is needed to accurately model and manage on-farm nutrient loadings.

ContributorsMuenich, Rebecca (Author) / Kalcic, M. M. (Author) / Winsten, J. (Author) / Fisher, K. (Author) / Day, M. (Author) / O'Neil, G. (Author) / Wang, Y.-C. (Author) / Scavia, D. (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017