This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
191218-Thumbnail Image.png
Description
Cybersecurity and research do not have to be opposed to each other. With increasing cyberattacks, it is more important than ever for cybersecurity and research to corporate. The authors describe how Research Liaisons and Information Assurance: Michigan Medicine (IA:MM) collaborate at Michigan Medicine, an academic medical center subject to strict

Cybersecurity and research do not have to be opposed to each other. With increasing cyberattacks, it is more important than ever for cybersecurity and research to corporate. The authors describe how Research Liaisons and Information Assurance: Michigan Medicine (IA:MM) collaborate at Michigan Medicine, an academic medical center subject to strict HIPAA controls and frequent risk assess- ments. IA:MM provides its own Liaison to work with the Research Liaisons to better understand security process and guide researchers through the process. IA:MM has developed formal risk decision processes and informal engagements with the CISO to provide risk- based cybersecurity instead of controls-based. This collaboration has helped develop mitigating procedures for researchers when standard controls are not feasible.
ContributorsMcCaffrey, Deb (Author) / Kelley, Jessica (Author)
Created2022-07-14
Rethinking Conceptual Art
Description

This book review considers three books on Conceptual Art that appeared in this year, by Anne Rorimer, Michael Newman and Jon Bird, and Rosalind Krauss. In 2011 this review was distinguished as one of the most consulted in the history of caa.reviews; see Patricia Kelly, “2002,” at: http://www.caareviews.org/centennial/2002

ContributorsMesch, Claudia (Author)
Created2002
127810-Thumbnail Image.png
Description

The following literature review talks about the driving simulation platforms commercially available for automated vehicle development. It is also a comparison of the simulation packages, their advantages and drawbacks, and an insight into what is missing in the simulators of today. Automated vehicle safety and reliability are the important requirements

The following literature review talks about the driving simulation platforms commercially available for automated vehicle development. It is also a comparison of the simulation packages, their advantages and drawbacks, and an insight into what is missing in the simulators of today. Automated vehicle safety and reliability are the important requirements when developing automated vehicles. These requirements are guaranteed by extensive functional and performance tests. Conducting these tests on real vehicles is extremely expensive and time consuming, and thus it is necessary to develop a simulation platform to perform these tasks. In most cases, it is difficult for system or algorithm developers in the testing process to evaluate the massive design space. To test any algorithm change, developers need to test a functional module alone, and later setting up a whole physical testing environment that consists of several other modules, leading to enormous testing costs. Fortunately, many of the testing tasks can be accomplished by utilizing simulator. The key to the success of a simulation is how accurately the simulator can simulate the physical reality.

ContributorsGopalakrishnan Nair, Vaishakh (Author)
Created2018-11-30
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12